多尺度自校正双直方图均衡化红外图像增强

张桓, 陈志盛

张桓, 陈志盛. 多尺度自校正双直方图均衡化红外图像增强[J]. 红外技术, 2023, 45(11): 1207-1215.
引用本文: 张桓, 陈志盛. 多尺度自校正双直方图均衡化红外图像增强[J]. 红外技术, 2023, 45(11): 1207-1215.
ZHANG Huan, CHEN Zhisheng. Multi-scale Auto-Corrected Bi-Histogram Equalization for Infrared Image Enhancement[J]. Infrared Technology , 2023, 45(11): 1207-1215.
Citation: ZHANG Huan, CHEN Zhisheng. Multi-scale Auto-Corrected Bi-Histogram Equalization for Infrared Image Enhancement[J]. Infrared Technology , 2023, 45(11): 1207-1215.

多尺度自校正双直方图均衡化红外图像增强

基金项目: 

湖南省哲学社会科学基金 19YBA020

长沙理工大学青年教师成长计划 2019QJCZ079

详细信息
    作者简介:

    张桓(1976-),女,硕士,讲师,主要从事数字媒体艺术设计、图像处理方面的研究。E-mail: zhanghuan@csust.edu.cn

    通讯作者:

    陈志盛(1975-),男,博士,副教授,硕士生导师,主要从事人工智能、机器视觉方面的研究。E-mail: chenzhisheng@csust.edu.cn

  • 中图分类号: TP391

Multi-scale Auto-Corrected Bi-Histogram Equalization for Infrared Image Enhancement

  • 摘要: 针对红外图像增强过程中容易饱和、细节丢失等问题,提出一种参数自设定的双直方图均衡化方法。根据灰度级累积概率密度黄金比例值将原始图像划分为两个独立的子图像。结合原始图像曝光度和子图像灰度级区间信息,对每个子图像的直方图进行多尺度自适应加权校正。基于校正后的直方图,对每个子图像分别作均衡化映射变换,最后合并子图像获得增强图像。在红外图像公开数据集INFRARED100上进行的测试显示,与亮度保持双直方图均衡化(Brightness Preserving Bi-Histogram Equalization,BBHE)、带平台限制的双直方图均衡化(Bi-histogram Equalization with a Plateau Limit,BHEPL)、基于曝光度的双直方图均衡化(Exposure based Sub-image Histogram Equalization,ESIHE)方法相比,所提方法增强的图像具有合适的平均对比度和更大的平均信息熵,在峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)、结构相似度(Structural Similarity,SSIM)、绝对平均亮度偏差(Absolute Mean Brightness Error,AMBE)指标上平均提升至少17.2%、4.0%、56.2%。实验结果表明,所提方法对不同亮度特征的红外图像都有良好的适应性,可有效增强红外图像对象和背景之间的对比度,在噪声抑制、亮度和细节保持等方面优于同类方法。
    Abstract: We proposed a parameter self-tuning bi-histogram equalization method to solve saturation and detail loss in infrared image enhancement. We decomposed an input image into two independent sub-images according to the golden ratio of the gray cumulative probability density and modified each sub-image histogram through a multi-scale adaptive weighing process with input image exposure and sub-image gray-level interval information. Subsequently, we performed the equalization of the two corrected sub-histograms independently and combined the two equalized sub-images into a single output image. A test on 100 infrared images in a public dataset-INFRARED100 showed that, compared with brightness preserving bi-histogram equalization (BBHE), bi-histogram equalization with a plateau limit (BHEPL), and exposure-based sub-image histogram equalization (ESIHE), the images enhanced by the proposed method have appropriate contrast and greater average information entropy. We increased the peak signal-to-noise ratio (PSNR), structural similarity (SSIM) index, and absolute mean brightness error (AMBE) by at least 17.2%, 4.0%, and 56.2% on average. The experiments illustrated that the proposed method is adaptable to infrared images with different brightness characteristics, effectively improving the contrast between the infrared image object and background. This method is superior to noise suppression, brightness, and detail preservation methods.
  • 图  1   MABHE方法流程图

    Figure  1.   Flowchart of the proposed MABHE method

    图  2   红外图像直方图校正结果对比

    Figure  2.   Comparison of infrared image histogram correction results

    图  3   低亮度场景1增强效果对比

    Figure  3.   Comparison of enhancement for low brightness scene 1

    图  4   中等亮度场景2增强效果对比

    Figure  4.   Comparison of enhancement for medium brightness scene 2

    图  5   高亮度场景3增强效果对比

    Figure  5.   Comparison of enhancement for high brightness scene 3

    图  6   测试结果统计箱线图

    Figure  6.   Box plots of test result statistics

    表  1   基于INFARED100数据集的图像质量评价指标均值

    Table  1   Average performance metric for the 100 images of the public dataset-INFARED100.

    Methods PSNR SSIM AMBE IE MG
    Original - - - 6.2731 4.1493
    HE 11.8365 0.5221 42.6232 5.5617 14.1961
    CLAHE 20.2560 0.7433 14.6675 7.1956 10.6660
    BBHE[8] 14.9613 0.6359 16.4776 6.1134 11.9938
    BHEPL[15] 20.1940 0.8202 7.7970 6.2118 8.2653
    AGCWD[6] 13.2681 0.7777 48.8978 6.2036 8.4196
    ESIHE[19] 21.2272 0.8523 16.7685 6.2119 6.9825
    TSIHE[9] 22.8248 0.8771 4.1942 6.2133 7.1630
    Proposed 24.8834 0.8866 3.4119 6.2530 7.0959
    下载: 导出CSV

    表  2   分场景图PSNR指标

    Table  2   Evaluation results of PSNR metric

    Methods Scene 1 Scene 2 Scene 3
    HE 10.2957 13.1403 11.8123
    CLAHE 19.8973 18.5916 21.3235
    BBHE[8] 14.8541 13.7137 17.5704
    BHEPL[15] 18.3898 17.7603 19.8411
    AGCWD[6] 13.2483 12.6241 15.1278
    ESIHE[19] 22.1206 18.3078 21.2025
    TSIHE[9] 19.7175 21.4374 24.3171
    Proposed 20.3399 20.9097 24.8429
    下载: 导出CSV

    表  3   分场景图SSIM指标

    Table  3   Evaluation results of SSIM metric

    Methods Scene 1 Scene 2 Scene 3
    HE 0.4134 0.5559 0.4293
    CLAHE 0.7408 0.7030 0.8001
    BBHE[8] 0.5905 0.5599 0.7623
    BHEPL[15] 0.7589 0.7378 0.8991
    AGCWD[6] 0.7174 0.7962 0.9492
    ESIHE[19] 0.8432 0.8317 0.8563
    TSIHE[9] 0.8302 0.8175 0.8970
    Proposed 0.8253 0.8319 0.8938
    下载: 导出CSV

    表  4   分场景图AMBE指标

    Table  4   Evaluation results of AMBE metric

    Methods Scene 1 Scene 2 Scene 3
    HE 53.8064 21.7324 35.9310
    CLAHE 15.8266 11.5483 7.7629
    BBHE[8] 4.3586 12.3094 25.2210
    BHEPL[15] 4.1526 2.1580 18.9198
    AGCWD[6] 47.2736 54.0382 42.5067
    ESIHE[19] 10.2090 26.0609 16.0833
    TSIHE[9] 4.3061 0.6500 0.7722
    Proposed 0.8997 4.0071 2.3998
    下载: 导出CSV

    表  5   分场景图IE指标

    Table  5   Evaluation results of IE metric

    Methods Scene 1 Scene 2 Scene 3
    Original 6.0232 6.5258 5.8833
    HE 5.3917 5.9028 5.2211
    CLAHE 7.0593 7.5560 7.0979
    BBHE[8] 5.9508 6.3433 5.7647
    BHEPL[15] 6.0018 6.4437 5.8325
    AGCWD[6] 5.9925 6.4525 5.8209
    ESIHE[19] 5.9883 6.4571 5.8062
    TSIHE[9] 6.0114 6.4242 5.8391
    Proposed 6.0213 6.4925 5.8665
    下载: 导出CSV

    表  6   分场景图MG指标

    Table  6   Evaluation results of MG metric

    Methods Scene 1 Scene 2 Scene 3
    Original 3.0842 3.7568 2.5470
    HE 15.7834 11.7503 10.9348
    CLAHE 9.3561 10.3328 6.1693
    BBHE[8] 9.9451 11.7182 5.8128
    BHEPL[15] 7.5330 8.8694 4.6992
    AGCWD[6] 8.4280 7.3790 3.7168
    ESIHE[19] 6.0012 6.1858 4.5910
    TSIHE[9] 6.8817 7.5362 4.2996
    Proposed 6.9340 7.3872 4.7513
    下载: 导出CSV
  • [1] 孔松涛, 黄镇, 杨谨如. 红外热像无损检测图像处理研究现状与进展[J]. 红外技术, 2019, 41(12): 1133-1140. http://hwjs.nvir.cn/article/id/hwjs201912007

    KONG S, HUANG Z, YANG J. Research status and development of image processing for infrared thermal image nondestructive testing[J]. Infrared Technology, 2019, 41(12): 1133-1140. http://hwjs.nvir.cn/article/id/hwjs201912007

    [2]

    ZUO J, HU X, XU L, et al. CH4 gas leakage detection method for low contrast infrared images [J]. Infrared Physics & Technology, 2022, 127: 104473.

    [3]

    HE Z, TANG S, YANG J, et al. Cascaded deep networks with multiple receptive fields for infrared image super-resolution[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(8): 2310-2322. DOI: 10.1109/TCSVT.2018.2864777

    [4]

    RASHEED M T, SHI D, KHAN H. A comprehensive experiment-based review of low-light image enhancement methods and benchmarking low-light image quality assessment[J]. Signal Processing, 2023, 204: 108821 DOI: 10.1016/j.sigpro.2022.108821

    [5]

    GONZALEZ R, WOODS R. Digital Image Processing[M]. 4th edition, New York: Pearson, 2018.

    [6]

    HUANG S C, CHENG F C, CHIU Y S. Efficient contrast enhancement using adaptive Gamma correction with weighting distribution[J]. IEEE Transactions on Image Processing, 2013, 22(3): 1032-1041. DOI: 10.1109/TIP.2012.2226047

    [7] 胡家珲, 詹伟达, 桂婷婷, 等. 基于多尺度加权引导滤波的红外图像增强方法[J]. 红外技术, 2022, 44(10): 1082-1088. http://hwjs.nvir.cn/article/id/be19ce07-80c0-43ee-85ef-7f82fc8988d9

    HU J, ZHAN W, GUI T, et al. Infrared image enhancement method based on multiscale weighted guided filtering [J]. Infrared Technology, 2022, 44(10): 1082-1088. http://hwjs.nvir.cn/article/id/be19ce07-80c0-43ee-85ef-7f82fc8988d9

    [8]

    KIM Y T. Contrast enhancement using brightness preserving bi-histogram equalization[J]. IEEE Transactions on Consumer Electronics, 1997, 43(1): 1-8. DOI: 10.1109/30.580378

    [9]

    RAHMAN H, PAUL G C. Tripartite sub-image histogram equalization for slightly low contrast gray-tone image enhancement[J]. Pattern Recognition, 2023, 134: 109043. DOI: 10.1016/j.patcog.2022.109043

    [10]

    PAUL A. Adaptive tri-plateau limit tri-histogram equalization algorithm for digital image enhancement[J]. Visual Computer, 2023, 39: 297-318. DOI: 10.1007/s00371-021-02330-z

    [11]

    Caballero R, Pineda I, Román J, et al. Quadri-histogram equalization for infrared images using cut-off limits based on the size of each histogram [J]. Infrared Physics & Technology, 2019, 99: 257-264.

    [12]

    Rao B S. Dynamic histogram equalization for contrast enhancement for digital images[J]. Applied Soft Computing, 2020, 89: 106114. DOI: 10.1016/j.asoc.2020.106114

    [13] 江巨浪, 刘国明, 朱柱, 等. 基于快速模糊聚类的动态多直方图均衡化算法[J]. 电子学报, 2022, 50(1): 167-176. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU202201019.htm

    JIANG J, LIU G, ZHU Z, et al. Dynamic multi-histogram equalization based on fast fuzzy clustering[J]. Acta Electronica Sinica, 2022, 50(1): 167-176. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU202201019.htm

    [14] 闫哲, 蒋砾, 杨帆, 等. 基于双直方图均衡算法的红外图像增强[J]. 红外技术, 2022, 44(9): 944-950. http://hwjs.nvir.cn/article/id/fd34432d-340f-429b-b2ae-790b2c85b4b0

    YAN Z, JIANG L, YANG F, et al. Bi-histogram equalization algorithm for infrared image enhancement [J]. Infrared Technology, 2022, 44(9): 944-950. http://hwjs.nvir.cn/article/id/fd34432d-340f-429b-b2ae-790b2c85b4b0

    [15]

    OOI C H, PIK K, IBRAHIM H. Bi-histogram equalization with a plateau limit for digital image enhancement [J]. IEEE Transactions on Consumer Electronics, 2009, 55(4): 2072-2080. DOI: 10.1109/TCE.2009.5373771

    [16]

    Bhandari A K, Kandhway P, Maurya S. Salp Swarm algorithm-based optimally weighted histogram framework for image enhancement[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 6807-6815. DOI: 10.1109/TIM.2020.2976279

    [17]

    Kandhway P, Bhandari A K, Singh A. A novel reformed histogram equalization based medical image contrast enhancement using krill herd optimization [J]. Biomedical Signal Processing and Control, 2020, 56: 101677.

    [18]

    Majeed S H, Isa N A M. Iterated adaptive entropy-clip limit histogram equalization for poor contrast images[J]. IEEE Access, 2020, 8: 144218-144245.

    [19]

    Singh K, Kapoor R. Image enhancement using exposure based sub image histogram equalization [J]. Pattern Recognition Letters, 2014, 36: 10-14.

    [20] 谢凤英. 数字图像处理及应用[M]. 第2版, 北京: 电子工业出版社, 2016.

    XIE F. Digital Image Processing and Application[M]. 2nd edition Beijing: Publishing House of Electronics Industry, 2016.

  • 期刊类型引用(0)

    其他类型引用(4)

图(6)  /  表(6)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  62
  • PDF下载量:  57
  • 被引次数: 4
出版历程
  • 收稿日期:  2023-02-05
  • 修回日期:  2023-03-30
  • 刊出日期:  2023-11-19

目录

    /

    返回文章
    返回