多尺度自校正双直方图均衡化红外图像增强

张桓, 陈志盛

张桓, 陈志盛. 多尺度自校正双直方图均衡化红外图像增强[J]. 红外技术, 2023, 45(11): 1207-1215.
引用本文: 张桓, 陈志盛. 多尺度自校正双直方图均衡化红外图像增强[J]. 红外技术, 2023, 45(11): 1207-1215.
ZHANG Huan, CHEN Zhisheng. Multi-scale Auto-Corrected Bi-Histogram Equalization for Infrared Image Enhancement[J]. Infrared Technology , 2023, 45(11): 1207-1215.
Citation: ZHANG Huan, CHEN Zhisheng. Multi-scale Auto-Corrected Bi-Histogram Equalization for Infrared Image Enhancement[J]. Infrared Technology , 2023, 45(11): 1207-1215.

多尺度自校正双直方图均衡化红外图像增强

基金项目: 

湖南省哲学社会科学基金 19YBA020

长沙理工大学青年教师成长计划 2019QJCZ079

详细信息
    作者简介:

    张桓(1976-),女,硕士,讲师,主要从事数字媒体艺术设计、图像处理方面的研究。E-mail: zhanghuan@csust.edu.cn

    通讯作者:

    陈志盛(1975-),男,博士,副教授,硕士生导师,主要从事人工智能、机器视觉方面的研究。E-mail: chenzhisheng@csust.edu.cn

  • 中图分类号: TP391

Multi-scale Auto-Corrected Bi-Histogram Equalization for Infrared Image Enhancement

  • 摘要: 针对红外图像增强过程中容易饱和、细节丢失等问题,提出一种参数自设定的双直方图均衡化方法。根据灰度级累积概率密度黄金比例值将原始图像划分为两个独立的子图像。结合原始图像曝光度和子图像灰度级区间信息,对每个子图像的直方图进行多尺度自适应加权校正。基于校正后的直方图,对每个子图像分别作均衡化映射变换,最后合并子图像获得增强图像。在红外图像公开数据集INFRARED100上进行的测试显示,与亮度保持双直方图均衡化(Brightness Preserving Bi-Histogram Equalization,BBHE)、带平台限制的双直方图均衡化(Bi-histogram Equalization with a Plateau Limit,BHEPL)、基于曝光度的双直方图均衡化(Exposure based Sub-image Histogram Equalization,ESIHE)方法相比,所提方法增强的图像具有合适的平均对比度和更大的平均信息熵,在峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)、结构相似度(Structural Similarity,SSIM)、绝对平均亮度偏差(Absolute Mean Brightness Error,AMBE)指标上平均提升至少17.2%、4.0%、56.2%。实验结果表明,所提方法对不同亮度特征的红外图像都有良好的适应性,可有效增强红外图像对象和背景之间的对比度,在噪声抑制、亮度和细节保持等方面优于同类方法。
    Abstract: We proposed a parameter self-tuning bi-histogram equalization method to solve saturation and detail loss in infrared image enhancement. We decomposed an input image into two independent sub-images according to the golden ratio of the gray cumulative probability density and modified each sub-image histogram through a multi-scale adaptive weighing process with input image exposure and sub-image gray-level interval information. Subsequently, we performed the equalization of the two corrected sub-histograms independently and combined the two equalized sub-images into a single output image. A test on 100 infrared images in a public dataset-INFRARED100 showed that, compared with brightness preserving bi-histogram equalization (BBHE), bi-histogram equalization with a plateau limit (BHEPL), and exposure-based sub-image histogram equalization (ESIHE), the images enhanced by the proposed method have appropriate contrast and greater average information entropy. We increased the peak signal-to-noise ratio (PSNR), structural similarity (SSIM) index, and absolute mean brightness error (AMBE) by at least 17.2%, 4.0%, and 56.2% on average. The experiments illustrated that the proposed method is adaptable to infrared images with different brightness characteristics, effectively improving the contrast between the infrared image object and background. This method is superior to noise suppression, brightness, and detail preservation methods.
  • 近年来,随着红外焦平面阵列分辨率不断增大,红外成像技术从工业、农业、军事和消防领域,逐渐扩展到如体温测量、自动驾驶等民用领域。在红外成像系统中,由于系统设计、元器件的半导体材料和制造工艺等多方面原因,引入非均匀性噪声是无法避免的,这也是影响红外成像技术应用的关键问题。

    红外图像非均匀性校正算法主要分为3类。应用最广泛的是基于标定的校正算法,如两点校正法[1]。该类算法校正时需要参考辐射源,设备需要周期性停机校正。基于场景的校正算法如时域高通滤波法[2],对于固定的噪声有效,但会将背景中的低频部分作为噪声滤除,并会产生“鬼影”问题。Zuo等人[3]改进了时域高通滤波法,将双边滤波引入算法。Qian等人[4]提出了基于空域低通的时域高通滤波算法,进一步改善了“鬼影”问题和细节丢失的问题。Harris等人[5]首次提出使用恒定统计平均法进行非均匀性校正。但基于场景的各类算法,均存在适用条件苛刻以及“鬼影”问题。基于神经网络和深度学习的算法近年来不断发展,Kuang等人[6]提出使用三层神经网络进行非均匀性校正,赵春晖等人[7]对神经网络的滤波器进行改进。由于这些算法的神经网络层数少,算法的校正能力有限。张龙等人[8]将神经网络与双边滤波算法结合,一定程度上提高了校正效果。Mou等人[9]使用了层数更多的神经网络,并提出使用残差连接提高算法的校正效果[10]。He等人[11]在训练深度学习网络时,对数据集添加模拟的条纹状非均匀性噪声。

    随着计算机的计算能力不断发展,深度学习算法使用层数更多的神经网络来提高算法精度。目前基于深度学习的红外图像非均匀性校正算法的研究较少,算法存在校正效果不佳,图片过度平滑和适应性不强的问题。本文借鉴CBDnet网络使用噪声估计子网络的思想,设计了一种全卷积深度学习网络,该网络包含非均匀性等级估计子网络和校正主网络两部分,子网络对图片的非均匀性等级进行估计,并将非均匀性等级估计图作为参数输入主网络,避免出现过拟合问题,以提高网络的校正效果和适应性。

    红外探测器的核心元器件是红外焦平面阵列,其探测单元的响应可以使用线性数学模型表示为:

    $$ y_{i, j}(n)=A_{i, j} \chi_{i, j}(n)+B_{i, j}(n) $$ (1)

    式中:χi, j为红外焦平面阵列单个像元的输入;yi, j为对应像元的输出;Ai, j为像元增益;Bi, j为像元偏置。

    由于半导体材料的电学特性和生产工艺的限制,红外焦平面阵列会随着使用时间的延长而发生漂移现象,从而导致红外成像系统得到的红外图像产生非均匀性噪声。由于红外焦平面阵列纵向的所有像元共用一个放大器,当成像系统产生漂移时,红外图像就会产生非常明显的纵向条纹状噪声。

    Zhang等人[12]使用全卷积网络对可见光图像高斯分布点状噪声去噪时,将噪声等级估计图作为输入,提高了网络去噪效果。Guo等人[13]通过进一步研究发现,当噪声等级估计图与图片真实噪声等级匹配时,去噪效果良好,如果产生低估,去噪效果变差。Guo等人针对可见光高斯分布点状噪声去噪任务提出了噪声等级估计子网络,本文首次将该思路引入红外图像条纹状非均匀性校正算法,设计了非均匀性等级估计子网络和校正主网络相结合的新网络。经过训练后,该子网络根据输入图像产生非均匀性等级估计图,估计图作为单独的数据通道,与待校正图片一起输入主网络,提高网络对不同等级非均匀性的适应性,从而提高网络的校正效果。

    深度学习网络使用的全连接层常用于分类任务,全连接层的设计要求输入图像尺寸固定,并且全连接层会使网络的权重参数变多,网络的训练和识别速度降低。文中网络采用全卷积设计,网络支持不同尺寸的图片作为输入,相比于全连接层,全卷积网络减少了网络的权重参数数量,提高了网络的训练和识别速度。

    文中算法的实施流程如图 1所示。首先将子网络和主网络同时在数据集上进行训练。待模型收敛后,将待校正图片输入模型,得到非均匀性校正后的图片。

    图  1  基于全卷积网络的特征算法实施流程
    Figure  1.  Algorithm of features based on fully convolutional network flow chart

    网络包含非均匀性等级估计子网络和校正主网络两个部分。两部分均采用全卷积设计,不含全连接层。含有非均匀性噪声的输入红外图像表示为x,非均匀性等级估计子网络表示为Fs,校正主网络表示为Fm。非均匀性等级估计子网络的任务是得到非均匀性等级估计图Fs(x),并将其作为一个参数与待校正红外图片一起输入校正主网络,最终得到校正后的红外图片Fm[x, Fs(x)]。

    主网络如果只接受含有非均匀性噪声的红外图像x作为参数,容易发生针对数据集非均匀性强度的过拟合现象,而实际红外图像的非均匀性强度往往与数据集不一致,导致神经网络只针对数据集中的非均匀性强度产生良好的效果,而在对实际红外图像进行非均匀性校正时表现不佳。文中网络采用了一个非均匀性等级估计子网络,经过迭代训练后,可以对非均匀性等级进行估计,输出非均匀性等级估计图,并将估计的结果作为一个输入参数输入主网络。当实际含有非均匀性噪声的红外图片输入网络后,先经过子网络对其非均匀性等级进行估计,并将估计的结果与原图像一起输入主网络,可以有效提高网络非均匀性校正效果。网络整体结构如图 2所示。

    图  2  全卷积神经网络结构
    Figure  2.  Structure of the fully convolutional network

    由于子网络的任务是对非均匀性等级进行估计,并不参与最终的校正任务,所以子网络不需要层数过多,且考虑到红外图像均为单通道灰度图,没有彩色图片R,G,B三通道中的颜色信息,所以网络的通道数不宜过多。最终设计的网络为4层,32通道。网络结构如图 3所示。

    图  3  非均匀性等级估计子网络
    Figure  3.  Non-uniformity level estimation subnetwork

    子网络为4层全卷积结构,每层通过尺寸为3×3的卷积核进行卷积操作,生成32通道的特征图。每层卷积层后使用ReLU激活函数。为了保证子网络输出的非均匀性等级估计图尺寸与原图片保持一致,子网络不使用池化层,并对边缘进行补0操作。子网络的详细参数如表 1所示。

    表  1  子网络参数
    Table  1.  Parameters of the subnetwork
    Layer Filters Input Output
    Conv 3×3×32 256×256×1 256×256×32
    Conv 3×3×32 256×256×32 256×256×32
    Conv 3×3×32 256×256×32 256×256×32
    Conv 3×3×1 256×256×32 256×256×1
    下载: 导出CSV 
    | 显示表格

    校正主网络同样采用全卷积的结构。网络共有12层,每一层包含一个尺寸为3×3大小的卷积核,生成64通道的特征图。在网络训练过程中,随着网络参数的更新,更新参数的这一层神经网络,会导致上一层网络输入数据的分布发生变化,随着网络加深,这种变化会层层叠加,导致网络难以收敛,所以在设计层数较多的主网络时使用批归一化[14]操作。

    网络的第1层使用3×3大小的卷积核,经过ReLU激活函数后输出。网络的第2层到第11层,特征图经过3×3大小的卷积核后,先进行批归一化操作后,再经过ReLU激活函数输出。网络的最后一层只有3×3大小的卷积层,不进行批归一化操作,也不经过激活函数,得到最终的输出图片。为保证输入图片和输出图片的尺寸保持一致,对边缘采取补0操作。校正主网络的结构图如图 4所示,网络的具体参数如表 2所示。

    图  4  校正主网络
    Figure  4.  Main network of correction
    表  2  校正主网络参数
    Table  2.  Parameters of main network
    Layer Filters Input Output
    Conv 3×3×64 256×256×64 256×256×64
    Conv 3×3×64 256×256×64 256×256×64
    Conv 3×3×64 256×256×64 256×256×64
    Conv 3×3×64 256×256×64 256×256×64
    Conv 3×3×64 256×256×64 256×256×64
    Conv 3×3×64 256×256×64 256×256×64
    Conv 3×3×64 256×256×64 256×256×64
    Conv 3×3×64 256×256×64 256×256×64
    Conv 3×3×64 256×256×64 256×256×64
    Conv 3×3×64 256×256×64 256×256×64
    Conv 3×3×64 256×256×64 256×256×64
    Conv 3×3×1 256×256×1 256×256×1
    下载: 导出CSV 
    | 显示表格

    文中网络的目标函数分为二部分,第一部分是非均匀性等级估计子网络Fs输出的非均匀性等级估计图Fs(x)与给定的非均匀性等级图m之间的关系,第二部分是校正主网络Fm输出校正后的图片Fm[x, Fs(x)]与不含非均匀性噪声的理想红外图像y之间的关系。

    子网络的任务是输出准确的非均匀性等级估计图,所以子网络的目标函数Ls为:

    $$ {L_{\text{s}}} = \left\| {{F_{\text{s}}}\left( x \right) - m} \right\|_2^2 $$ (2)

    校正主网络接收子网络输入的非均匀性等级估计图Fs(x)和输入图像x后,得到最终校正后的红外图像,主网络的目标函数Lm为:

    $$ {L_{\text{m}}} = \left\| {{F_{\text{m}}}\left[ {x, {F_{\text{s}}}\left( x \right)} \right] - y} \right\|_2^2 $$ (3)

    网络整体的损失函数L为:

    $$ L=\lambda_{\mathrm{s}} L_{\mathrm{s}}+\lambda_{\mathrm{m}} L_{\mathrm{m}} $$ (4)

    式中:λsλm分别为子网络损失函数系数和主网络损失函数系数,反映二者在训练中所占权重。

    由于红外探测器可以在多种场景中使用,为了防止神经网络出现过拟合现象,数据集应当包含丰富的场景。从FLIR和LTIR公开数据集中随机挑选不同场景的红外图片900张,挑选由实验室自主研发的基于氧化钒非制冷型IRFPA的长波红外探测器收集的不同场景红外图像100张,裁剪成256×256大小,作为文中算法的训练集。该训练集包含常见的生活场景,如街道、公园、野外、室内、车辆、人像、建筑等。

    由于包含真实非均匀性噪声的红外图像难以收集,所以根据红外焦平面阵列响应的数学模型,为训练集添加标准差分别为{0,0.05,0.1,0.15},均值为1的高斯分布增益噪声,标准差为{0,0.05,0.1,0.15},均值为0的高斯分布偏置噪声。

    测试集同样从FLIR和LTIR公开红外数据集中选取,添加与训练集相同的高斯分布噪声。同时添加由实验室自主研发的长波红外探测器收集的2段1000帧的红外图像序列,其中1000帧添加与训练集相同的噪声。其余1000帧为该红外探测器经过两点校正后,随使用出现条纹状非均匀性噪声时收集的红外图像序列,每帧图像均含有真实的非均匀性噪声。

    文中深度学习网络选择基于GPU的Tensorflow深度学习框架,使用Keras深度学习库编写网络模型程序,训练的硬件环境为Intel(R)Core(TM)i5-8300H型号的CPU和GeForce GTX 1050Ti型号的GPU。

    由于训练集图片数量有限,使用随机旋转90°、180°、270°和镜像的方式进行数据集扩充,提高模型的泛化性,防止训练结果过拟合。

    文中算法使用主观评价和客观评价两种评价标准。客观评价采用峰值信噪比(peak signal to noise ratio,PSNR),结构相似性(structural similarity,SSIM)和粗糙度(roughness)。

    峰值信噪比公式为:

    $$ {\text{PSNR}} = 10 \times \lg \left[ {\frac{{{{\left( {{2^n} - 1} \right)}^2}}}{{{\text{MSE}}}}} \right] $$ (5)

    式中:n为图片的比特数。MSE表示图片的均方误差,其公式为:

    $$ {\text{MSE}} = \frac{1}{{mn}}\sum\limits_{i = 0}^{m - 1} {\sum\limits_{j = 0}^{n - 1} {{{\left\| {X\left( {i, j} \right) - Y\left( {i, j} \right)} \right\|}^2}} } $$ (6)

    式中:X表示校正后的红外图像;Y表示不含非均匀性噪声的理想红外图像;mn表示图片的宽和高。峰值信噪比数值越高,表示算法非均匀性校正效果越好。

    结构相似性公式为:

    $$ \operatorname{SSIM}(X, Y)=l(X, Y) \cdot c(X, Y) \cdot s(X, Y) $$ (7)

    式中:l表示图片的亮度;c表示图片的对比度;s表示图片的结构。结构相似性越接近于1,说明非均匀性校正效果越好。

    粗糙度公式为:

    $$ \rho(\boldsymbol{Y})=\frac{\left\|\boldsymbol{h}^{*} \boldsymbol{Y}\right\|_{1}+\left\|\boldsymbol{h}^{\mathrm{T}} * \boldsymbol{Y}\right\|}{\|\boldsymbol{Y}\|_{1}} $$ (8)

    式中:Y为图像像素值;h矩阵为[1, -1]的水平模板;hTh的转置矩阵,表示垂直模板;‘*’表示图像的卷积计算。粗糙度计算只需要当前图像的像素值,真实含有非均匀性的红外图像由于无法取得对应的理想图像,适合使用粗糙度来评价。粗糙度值越小说明图像越平滑,可以认为非均匀性校正效果越好。

    主观评价是校正效果评价重要的一部分。主观评价需要通过肉眼观察校正后的图片是否清晰,边缘是否发生模糊,条纹状噪声校正效果是否良好,是否引入新的噪声如“鬼影”等,图片细节保留是否良好等,补充客观指标无法反映的图片特征。

    子网络与主网络同时训练,需要明确定义非均匀性等级图,用于计算子网络部分的损失函数。非均匀性等级与红外图像的增益噪声和偏置噪声有关,所以将非均匀性等级图m定义为:

    $$ {m_{i, j}} = A\sqrt {{Y_{i, j}}} + B $$ (9)

    式中:A为人为添加的增益噪声的标准差值;B为偏置噪声的标准差值。

    对比算法包括传统基于场景的算法:基于双边滤波的时域高通滤波算法(bilateral filter based temporal high-pass filter nonuniformity correction, BFTH-NUC)[3];传统基于单帧的算法:中值直方图均衡化算法(median histogram equalization, MHE)[15];深度学习算法:DLS(Deep-learning single-image-based nonuni- formity correction)[11]、DMRN(Deep multiscale residual network)[16]。对比方法包括客观评价和主观评价,客观评价使用PSNR(Peak Signal to Noise Ratio)和SSIM(Structural Similarity)两个指标。

    首先对测试集中人为添加非均匀性噪声的1000帧红外图像序列进行校正效果对比。MHE算法、DLS算法、DMRN和文中算法不需要先验信息,可以基于单帧图片进行校正,但BFTH算法需要经过一定时间收敛,所以选取了算法校正效果稳定后的100帧图片的客观数据进行对比。各算法的平均PSNR和SSIM值如表 3所示。PSNR对比结果如图 5所示,SSIM对比结果如图 6所示。

    表  3  各算法平均PSNR和SSIM
    Table  3.  PSNR and SSIM of each algorithm
    Algorithm BFTH MHE DLS DMRN Ours
    PSNR/dB 32.93 33.92 34.39 34.86 35.90
    SSIM 0.828 0.858 0.887 0.903 0.928
    下载: 导出CSV 
    | 显示表格
    图  5  测试集PSNR图
    Figure  5.  PSNR of test data set
    图  6  测试集SSIM图
    Figure  6.  SSIM of test data set

    BFTH算法的PSNR值和SSIM值两项指标在4种算法中最差,表明非均匀性校正效果最差。MHE算法客观评价指标好于BFTH,但是数据的波动较为明显。DLS和DMRN两种基于深度学习的算法的客观指标明显高于两种传统算法。本章算法在5种对比算法中表现最佳,在PSNR和SSIM两项指标中均得到最好效果,且数据波动较小,说明本章算法校正后的红外图像与理想红外图像更加接近,校正效果更好更稳定。

    图 7展示了各算法对测试集其中一帧的校正效果。图 7(a)代表含有模拟非均匀性噪声的输入图片。图 7(b)背景明显变暗,且画面中出现了残余的条纹状非均匀性噪声。图 7(c)图 7(d)背景中出现了明显的残余非均匀性噪声。图 7(e)背景纯净,非均匀性噪声基本被去除,但从局部放大图中可以观察到明显的模糊,人物腿部边缘的细节出现丢失现象。图 7(f)为文中算法的校正效果图,非均匀性噪声基本被去除,观察局部放大图可以发现,人物边缘清晰可辨,细节丰富。

    图  7  各算法校正效果
    Figure  7.  Results of each algorithm

    为了进一步验证文中算法在真实情况下的校正效果,将测试集中含有真实非均匀性噪声的1000帧红外图像序列,使用4种算法进行校正。校正前的其中一帧图片如图 8所示。

    图  8  原始图片
    Figure  8.  Original Picture

    图像中可以观察到非常明显的条纹状非均匀性噪声,背景中的小目标、树木和建筑物等细节已经无法分辨,严重干扰红外图像信息传递。使用5种对比算法校正后的图像如图 9所示。

    图  9  各算法校正效果
    Figure  9.  Results of eachcorrection

    图 9(a)是含有真实非均匀性噪声的输入图像。图 9(b)非均匀性噪声基本被去除,但背景出现了明显的变暗。图 9(c)~(f)没有出现背景变暗的现象。从对人物的局部放大图中可以发现,图 9(c)出现了明显的残余非均匀性噪声。图 9(d)人物的边缘出现了模糊,细节丢失较为严重。图 9(e)和(f)校正效果整体更好,非均匀性噪声基本被去除,从局部放大图中可以发现,相比于图 9(e)图 9(f)中人物的边缘更加清晰锐利,人物与背景的对比度更高,非均匀性校正效果表现最好。

    各算法在含有真实非均匀性噪声的红外图像序列上的平均粗糙度值如表 4所示,基于深度学习的算法粗糙度值更小,文中算法粗糙度值在对比算法中最低,表明文中算法的校正效果表现最佳。

    表  4  各算法平均粗糙度
    Table  4.  Roughness of each algorithm
    Algorithm BFTH MHE DLS DMRN Ours
    ρ 0.107 0.072 0.064 0.058 0.049
    下载: 导出CSV 
    | 显示表格

    经过对比实验发现,文中算法在客观评价和主观评价中均取得了最好的校正效果,非均匀性噪声基本被去除,画面没有出现变暗和细节丢失的现象,也没有出现模糊。校正后的图片清晰锐利,细节丰富,说明文中算法在含有模拟非均匀性噪声和含有真实非均匀性噪声的红外图像序列中,均取得了良好的校正效果。

    提出一种全卷积神经网络,该网络包含一个非均匀性等级估计子网络和一个非均匀性校正主网络。将含有噪声的红外图像输入子网络后,子网络对其非均匀性等级进行估计,生成非均匀性等级估计图,并与原输入图片一同输入主网络。由于算法将非均匀性等级图作为参数输入主网络,避免了网络针对数据集中含有的非均匀性等级产生的过拟合现象,在实际非均匀性校正使用中适应性更好。经过实验验证,文中算法与传统的基于场景的算法和其他基于深度学习的算法相比,校正后的图像边缘清晰,细节丰富,峰值信噪比、结构相似性和粗糙度指标均有明显提升,图片质量高,校正效果良好。

  • 图  1   MABHE方法流程图

    Figure  1.   Flowchart of the proposed MABHE method

    图  2   红外图像直方图校正结果对比

    Figure  2.   Comparison of infrared image histogram correction results

    图  3   低亮度场景1增强效果对比

    Figure  3.   Comparison of enhancement for low brightness scene 1

    图  4   中等亮度场景2增强效果对比

    Figure  4.   Comparison of enhancement for medium brightness scene 2

    图  5   高亮度场景3增强效果对比

    Figure  5.   Comparison of enhancement for high brightness scene 3

    图  6   测试结果统计箱线图

    Figure  6.   Box plots of test result statistics

    表  1   基于INFARED100数据集的图像质量评价指标均值

    Table  1   Average performance metric for the 100 images of the public dataset-INFARED100.

    Methods PSNR SSIM AMBE IE MG
    Original - - - 6.2731 4.1493
    HE 11.8365 0.5221 42.6232 5.5617 14.1961
    CLAHE 20.2560 0.7433 14.6675 7.1956 10.6660
    BBHE[8] 14.9613 0.6359 16.4776 6.1134 11.9938
    BHEPL[15] 20.1940 0.8202 7.7970 6.2118 8.2653
    AGCWD[6] 13.2681 0.7777 48.8978 6.2036 8.4196
    ESIHE[19] 21.2272 0.8523 16.7685 6.2119 6.9825
    TSIHE[9] 22.8248 0.8771 4.1942 6.2133 7.1630
    Proposed 24.8834 0.8866 3.4119 6.2530 7.0959
    下载: 导出CSV

    表  2   分场景图PSNR指标

    Table  2   Evaluation results of PSNR metric

    Methods Scene 1 Scene 2 Scene 3
    HE 10.2957 13.1403 11.8123
    CLAHE 19.8973 18.5916 21.3235
    BBHE[8] 14.8541 13.7137 17.5704
    BHEPL[15] 18.3898 17.7603 19.8411
    AGCWD[6] 13.2483 12.6241 15.1278
    ESIHE[19] 22.1206 18.3078 21.2025
    TSIHE[9] 19.7175 21.4374 24.3171
    Proposed 20.3399 20.9097 24.8429
    下载: 导出CSV

    表  3   分场景图SSIM指标

    Table  3   Evaluation results of SSIM metric

    Methods Scene 1 Scene 2 Scene 3
    HE 0.4134 0.5559 0.4293
    CLAHE 0.7408 0.7030 0.8001
    BBHE[8] 0.5905 0.5599 0.7623
    BHEPL[15] 0.7589 0.7378 0.8991
    AGCWD[6] 0.7174 0.7962 0.9492
    ESIHE[19] 0.8432 0.8317 0.8563
    TSIHE[9] 0.8302 0.8175 0.8970
    Proposed 0.8253 0.8319 0.8938
    下载: 导出CSV

    表  4   分场景图AMBE指标

    Table  4   Evaluation results of AMBE metric

    Methods Scene 1 Scene 2 Scene 3
    HE 53.8064 21.7324 35.9310
    CLAHE 15.8266 11.5483 7.7629
    BBHE[8] 4.3586 12.3094 25.2210
    BHEPL[15] 4.1526 2.1580 18.9198
    AGCWD[6] 47.2736 54.0382 42.5067
    ESIHE[19] 10.2090 26.0609 16.0833
    TSIHE[9] 4.3061 0.6500 0.7722
    Proposed 0.8997 4.0071 2.3998
    下载: 导出CSV

    表  5   分场景图IE指标

    Table  5   Evaluation results of IE metric

    Methods Scene 1 Scene 2 Scene 3
    Original 6.0232 6.5258 5.8833
    HE 5.3917 5.9028 5.2211
    CLAHE 7.0593 7.5560 7.0979
    BBHE[8] 5.9508 6.3433 5.7647
    BHEPL[15] 6.0018 6.4437 5.8325
    AGCWD[6] 5.9925 6.4525 5.8209
    ESIHE[19] 5.9883 6.4571 5.8062
    TSIHE[9] 6.0114 6.4242 5.8391
    Proposed 6.0213 6.4925 5.8665
    下载: 导出CSV

    表  6   分场景图MG指标

    Table  6   Evaluation results of MG metric

    Methods Scene 1 Scene 2 Scene 3
    Original 3.0842 3.7568 2.5470
    HE 15.7834 11.7503 10.9348
    CLAHE 9.3561 10.3328 6.1693
    BBHE[8] 9.9451 11.7182 5.8128
    BHEPL[15] 7.5330 8.8694 4.6992
    AGCWD[6] 8.4280 7.3790 3.7168
    ESIHE[19] 6.0012 6.1858 4.5910
    TSIHE[9] 6.8817 7.5362 4.2996
    Proposed 6.9340 7.3872 4.7513
    下载: 导出CSV
  • [1] 孔松涛, 黄镇, 杨谨如. 红外热像无损检测图像处理研究现状与进展[J]. 红外技术, 2019, 41(12): 1133-1140. http://hwjs.nvir.cn/article/id/hwjs201912007

    KONG S, HUANG Z, YANG J. Research status and development of image processing for infrared thermal image nondestructive testing[J]. Infrared Technology, 2019, 41(12): 1133-1140. http://hwjs.nvir.cn/article/id/hwjs201912007

    [2]

    ZUO J, HU X, XU L, et al. CH4 gas leakage detection method for low contrast infrared images [J]. Infrared Physics & Technology, 2022, 127: 104473.

    [3]

    HE Z, TANG S, YANG J, et al. Cascaded deep networks with multiple receptive fields for infrared image super-resolution[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(8): 2310-2322. DOI: 10.1109/TCSVT.2018.2864777

    [4]

    RASHEED M T, SHI D, KHAN H. A comprehensive experiment-based review of low-light image enhancement methods and benchmarking low-light image quality assessment[J]. Signal Processing, 2023, 204: 108821 DOI: 10.1016/j.sigpro.2022.108821

    [5]

    GONZALEZ R, WOODS R. Digital Image Processing[M]. 4th edition, New York: Pearson, 2018.

    [6]

    HUANG S C, CHENG F C, CHIU Y S. Efficient contrast enhancement using adaptive Gamma correction with weighting distribution[J]. IEEE Transactions on Image Processing, 2013, 22(3): 1032-1041. DOI: 10.1109/TIP.2012.2226047

    [7] 胡家珲, 詹伟达, 桂婷婷, 等. 基于多尺度加权引导滤波的红外图像增强方法[J]. 红外技术, 2022, 44(10): 1082-1088. http://hwjs.nvir.cn/article/id/be19ce07-80c0-43ee-85ef-7f82fc8988d9

    HU J, ZHAN W, GUI T, et al. Infrared image enhancement method based on multiscale weighted guided filtering [J]. Infrared Technology, 2022, 44(10): 1082-1088. http://hwjs.nvir.cn/article/id/be19ce07-80c0-43ee-85ef-7f82fc8988d9

    [8]

    KIM Y T. Contrast enhancement using brightness preserving bi-histogram equalization[J]. IEEE Transactions on Consumer Electronics, 1997, 43(1): 1-8. DOI: 10.1109/30.580378

    [9]

    RAHMAN H, PAUL G C. Tripartite sub-image histogram equalization for slightly low contrast gray-tone image enhancement[J]. Pattern Recognition, 2023, 134: 109043. DOI: 10.1016/j.patcog.2022.109043

    [10]

    PAUL A. Adaptive tri-plateau limit tri-histogram equalization algorithm for digital image enhancement[J]. Visual Computer, 2023, 39: 297-318. DOI: 10.1007/s00371-021-02330-z

    [11]

    Caballero R, Pineda I, Román J, et al. Quadri-histogram equalization for infrared images using cut-off limits based on the size of each histogram [J]. Infrared Physics & Technology, 2019, 99: 257-264.

    [12]

    Rao B S. Dynamic histogram equalization for contrast enhancement for digital images[J]. Applied Soft Computing, 2020, 89: 106114. DOI: 10.1016/j.asoc.2020.106114

    [13] 江巨浪, 刘国明, 朱柱, 等. 基于快速模糊聚类的动态多直方图均衡化算法[J]. 电子学报, 2022, 50(1): 167-176. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU202201019.htm

    JIANG J, LIU G, ZHU Z, et al. Dynamic multi-histogram equalization based on fast fuzzy clustering[J]. Acta Electronica Sinica, 2022, 50(1): 167-176. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU202201019.htm

    [14] 闫哲, 蒋砾, 杨帆, 等. 基于双直方图均衡算法的红外图像增强[J]. 红外技术, 2022, 44(9): 944-950. http://hwjs.nvir.cn/article/id/fd34432d-340f-429b-b2ae-790b2c85b4b0

    YAN Z, JIANG L, YANG F, et al. Bi-histogram equalization algorithm for infrared image enhancement [J]. Infrared Technology, 2022, 44(9): 944-950. http://hwjs.nvir.cn/article/id/fd34432d-340f-429b-b2ae-790b2c85b4b0

    [15]

    OOI C H, PIK K, IBRAHIM H. Bi-histogram equalization with a plateau limit for digital image enhancement [J]. IEEE Transactions on Consumer Electronics, 2009, 55(4): 2072-2080. DOI: 10.1109/TCE.2009.5373771

    [16]

    Bhandari A K, Kandhway P, Maurya S. Salp Swarm algorithm-based optimally weighted histogram framework for image enhancement[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 6807-6815. DOI: 10.1109/TIM.2020.2976279

    [17]

    Kandhway P, Bhandari A K, Singh A. A novel reformed histogram equalization based medical image contrast enhancement using krill herd optimization [J]. Biomedical Signal Processing and Control, 2020, 56: 101677.

    [18]

    Majeed S H, Isa N A M. Iterated adaptive entropy-clip limit histogram equalization for poor contrast images[J]. IEEE Access, 2020, 8: 144218-144245.

    [19]

    Singh K, Kapoor R. Image enhancement using exposure based sub image histogram equalization [J]. Pattern Recognition Letters, 2014, 36: 10-14.

    [20] 谢凤英. 数字图像处理及应用[M]. 第2版, 北京: 电子工业出版社, 2016.

    XIE F. Digital Image Processing and Application[M]. 2nd edition Beijing: Publishing House of Electronics Industry, 2016.

  • 期刊类型引用(0)

    其他类型引用(3)

图(6)  /  表(6)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  61
  • PDF下载量:  55
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-02-05
  • 修回日期:  2023-03-30
  • 刊出日期:  2023-11-19

目录

/

返回文章
返回
x 关闭 永久关闭

尊敬的专家、作者、读者:

端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

感谢您对本刊的支持!

《红外技术》编辑部

2024年6月6日