基于YOLO-OS的车载红外图像小目标检测算法研究

Research on Small Object Detection in Vehicle-Mounted Infrared Images Based on YOLO-OS

  • 摘要: 针对车载红外图像具有较低对比度,目标细节和轮廓信息不够清晰,造成小目标特征易丢失及识别错误率高的问题,提出红外图像小目标检测模型YOLO-OS(Object-Small)。首先,构建极小目标检测层架构,以有效融合深层语义特征,增强模型对特征信息的表征与解析能力,同时,引入ADown下采样卷积在轻量化与精度之间取得最佳平衡。其次,主干网络设计了融合空间-通道重构卷积的C3SCC模块,增强模型对复杂背景中小目标的检测性能,同时保持较低的参数量。最后,采用动态上采样(Dysample)替代传统上采样方法,提高了多尺度融合过程中的插值精度。实验结果表明,相较于基准模型YOLOv11n,所提出的模型在保持38%参数量压缩的同时,mAP指标从51.5%提升至57.5%,在红外图像小目标检测任务中展现出更优的特征提取能力和检测精度。

     

    Abstract: Owing to the inherently low contrast of vehicle‑mounted infrared imagery—which renders target details and contours indistinct, leading to frequent loss of small‑target features and elevated misclassification rates—we present YOLO‑OS (Object‑Small), a novel infrared‑small‑target detection framework. First, we introduce an ultra‑small‑target detection head that seamlessly fuses deep semantic features, thereby bolstering the network’s capacity to represent and parse fine-grained information; concurrently, we embed an ADown downsampling convolution to strike an optimal trade‑off between model compactness and accuracy. Next, our backbone incorporates a C3SCC module—integrating spatial‑channel reconstruction convolutions—that elevates detection performance on diminutive targets amidst complex backgrounds while preserving a minimal parameter footprint. Finally, we replace conventional upsampling with a Dynamic Upsampling (Dysample) scheme to enhance interpolation precision during multi‑scale feature aggregation. Experimental evaluation demonstrates that, relative to the YOLOv11n baseline, YOLO‑OS achieves a 38 % reduction in parameter count and boosts mAP from 51.5 % to 57.5 %, evidencing its superior feature‑extraction prowess and detection accuracy for infrared small‑target scenarios.

     

/

返回文章
返回