反射器红外装置对低反射率物体的测温性能

黄善杰, 赵劲松, 王岭雪, 许方宇, 宋腾飞, 蔡毅

黄善杰, 赵劲松, 王岭雪, 许方宇, 宋腾飞, 蔡毅. 反射器红外装置对低反射率物体的测温性能[J]. 红外技术, 2025, 47(2): 131-140.
引用本文: 黄善杰, 赵劲松, 王岭雪, 许方宇, 宋腾飞, 蔡毅. 反射器红外装置对低反射率物体的测温性能[J]. 红外技术, 2025, 47(2): 131-140.
HUANG Shanjie, ZHAO Jinsong, WANG Lingxue, XU Fangyu, SONG Tengfei, CAI Yi. Temperature Measurement Performance of Reflector Infrared Devices on Low-Reflectivity Objects[J]. Infrared Technology , 2025, 47(2): 131-140.
Citation: HUANG Shanjie, ZHAO Jinsong, WANG Lingxue, XU Fangyu, SONG Tengfei, CAI Yi. Temperature Measurement Performance of Reflector Infrared Devices on Low-Reflectivity Objects[J]. Infrared Technology , 2025, 47(2): 131-140.

反射器红外装置对低反射率物体的测温性能

基金项目: 

国家自然科学基金 U1931124

国家自然科学基金 11673064

云南省自然科学基金 202401AT070140

详细信息
    作者简介:

    黄善杰(1984-),男,山东菏泽人,高级工程师,硕士,从事红外探测、望远镜热控等研究。E-mail: 308762@163.com

    通讯作者:

    王岭雪(1973-),女,云南石屏人,副教授,博士,从事光电成像器件方面的研究。E-mail: neobull@bit.edu.cn

    许方宇(1972-),男,山东济南人,副研究员,博士,从事红外探测器方面的研究。E-mail: xu_fangyu@ynao.ac.cn

  • 中图分类号: TN219

Temperature Measurement Performance of Reflector Infrared Devices on Low-Reflectivity Objects

  • 摘要:

    测温准确度较低是制约红外测温在精准测温领域应用的重要因素。目前红外测温的主要测量对象是低反射率物体,简称为低反体。针对传统红外装置在低反体精准测温方面的不足,采用反射器替换传统红外装置的镜头制成反射器红外装置,以提高其对低反体的测温性能。计算和测试结果显示,F数为1的红外镜头被替换为反射器后,红外装置对低反体的辐射收集能力和测温准确度提高约4倍。此外,低反体充满视场后,反射器红外装置的温度测量结果与测量距离无关。反射器红外装置有望用于科研和工业领域的高精度红外测温。

    Abstract:

    The low accuracy of temperature measurements is a significant factor that restricts the application of infrared temperature measurements in precise temperature measurement fields. Presently, the primary objects for infrared temperature measurement are those with low reflectivity, referred to as low-reflectivity objects. To address the deficiencies of conventional infrared devices, a reflector infrared device was developed by replacing the lens of a conventional infrared device with a reflector, thereby enhancing its temperature measurement performance on low-reflectivity objects. Calculations and experimental results indicated that, after replacing the F/1 infrared lens with a reflector, the radiation collection capability and temperature measurement accuracy of the infrared device for low-reflectivity objects improved by approximately four times. Furthermore, when the field of view was filled with a low-reflectivity object, the temperature measurement results of the reflector-infrared device were independent of measurement distance. Infrared reflector devices are promising candidates for high-precision infrared temperature measurements in both scientific research and industrial applications.

  • 图  1   两种反射器红外装置对低反体测温时的示意图

    Figure  1.   Schematic diagram of two types of reflector infrared devices for temperature measurement of low-reflectivity object

    图  2   入射到圆锥型反射器红外装置感光面的辐射组成示意图

    Figure  2.   Schematic diagram of the radiation composition incident on the sensitive surface of the conical reflector infrared device

    图  3   传统红外装置及其镜头控温

    Figure  3.   Conventional infrared device and its lens temperature control

    图  4   反射器红外装置的三维图

    Figure  4.   Three-dimensional pictures of two reflector infrared devices

    图  5   两种红外装置和黑体

    Figure  5.   Photos of two infrared devices and the blackbody

    图  6   三种红外装置在不同测量距离的相对辐照度

    Figure  6.   Relative irradiance of three infrared devices at different measurement distances

    图  7   仪器读数及其高斯拟合

    Figure  7.   Device readings and their Gaussian fitting

    表  1   仪器读数方程的系数

    Table  1   Device reading equation's coefficients

    Types U (×105) V (×106) W(×104) RMSE R2 (R-square)
    Parabolic reflector infrared device 14.63±0.04 0.838±0.0046 −2.463±0.009 6.122 1
    Conical reflector infrared device 14.37±0.003 0.881±0.004 −2.486±0.007 5.917 1
    Conventional infrared device 3.929±0.016 1.906±0.04 −2.436±0.07 6.159 1
    下载: 导出CSV

    表  2   不同测量距离的反射器红外装置的仪器读数

    Table  2   Device readings of reflector infrared device at different measurement distances

    Measurement distances L=10 mm L=20 mm L=30 mm L=40 mm
    Conical reflector infrared device (17℃ blackbody) 9471.3 9467.4 9462.7 9473.2
    Parabolic reflector infrared device (20℃ blackbody) 10189.4 10190.1 10187.5 10173.7
    下载: 导出CSV

    表  3   仪器读数和测温结果

    Table  3   Device readings and temperature measurement results

    Reflector
    temperature/℃
    Rm Temperature measurement result/℃
    12 Rma1=9824
    Rma2=9828.1
    Rma3=9819.4
    Ta1=20.987
    Ta2=20.999
    Ta3=20.975
    17 Rmb1=9367
    Rmb2=9377.4
    Rmb3=9384
    Tb1=16.969
    Tb2=16.999
    Tb3=17.018
    下载: 导出CSV

    表  4   测温精密度,准确度及参数U, σr和RMSE

    Table  4   Precision, accuracy of temperature measurement, and parameters U, σr, and RMSE

    Parameters Parabolic reflector infrared device Conical reflector infrared device Conventional infrared device
    U 1463000 1437000 392900
    σr 4.703 4.852 4.942
    σtp/℃ 0.013 0.014 0.051
    RMSE 6.122 5.917 6.159
    σta/℃ 0.021 0.022 0.081
    下载: 导出CSV
  • [1]

    Machin G, Anhalt K, Battuello M, et al. The European project on high temperature measurement solutions in industry (HiTeMS)–a summary of achievements[J]. Measurement, 2016, 78: 168-179. DOI: 10.1016/j.measurement.2015.09.033

    [2] 车勋建. 黑体转换式表面温度精确测量方法研究和仪器研制[D]. 沈阳: 东北大学, 2017.

    CHE Xunjian. Development of Blackbody Converting-type Method and Instrument for Precise Measurement of Surface Temperature[D]. Shenyang: Northeastern University, 2017.

    [3]

    CHE Xunjian, XIE Zhi. Surface temperature measurement with unknown emissivity using a two-color pyrometer placed with a reflector[C]//IOP Conference Series: Materials Science and Engineering, 2018, 398(1): 012005.

    [4]

    Drury M D, Perry K P, Land T. Pyrometers for surface-temperature measurement[J]. Journal of the Iron and Steel Institute, 1951, 169(3): 245-250.

    [5]

    Becker H B, Wall T F. Effect of specular reflection of hemispherical surface pyrometer on emissivity measurement[J]. Journal of Physics E: Scientific Instruments, 1981, 14(8): 998-1001. DOI: 10.1088/0022-3735/14/8/025

    [6] 姚成才, 葛新石, 程曙霞, 等. 一种新型人工黑体辐射源的理论和实验研究[J]. 工程热物理学报, 1991, 12(2): 164-168.

    YAO Chengcai, GE Xinshi, CHENG Shuxia, et al. The research on a new kind of blackbody radiation source[J]. Journal of Engineering Thermophysics, 1991, 12(2): 197-204.

    [7] 张平. 前置反射器辐射温度计系统误差研究[J]. 红外与毫米波学报, 1986, 5(3): 197-204.

    ZHANG Ping. A study of the system error of surface pyrometer[J]. Journal of Infrared and Millimeter Waves, 1986, 5(3): 197-204.

    [8]

    Turner S F, Metcalfe S F, Mellor A, et al. Accurate thermal imaging of low-emissivity surfaces using approximate blackbody cavities [C]//Thermosense: Thermal Infrared Applications XXXIV of SPIE, 2012, 8354: 309-316.

    [9]

    Peacock G R. Review of noncontact process temperature measurements in steel manufacturing[C]//SPIE Conference on Thermosense XXI, 1999, 3700: 171-189.

    [10]

    Ridley I, Beynon T G R. Infrared temperature measurement of bright metal strip using multiple reflection in a roll-strip wedge to enhance emissivity[J]. Measurement, 1989, 7(4): 171-176. DOI: 10.1016/0263-2241(89)90013-4

    [11]

    Krapez J C, Belanger C, Cielo P. A double-wedge reflector for emissivity enhanced pyrometry[J]. Measurement Science and Technology, 1990, 1(9): 857-864. DOI: 10.1088/0957-0233/1/9/004

    [12]

    Cielo P G, Krapez J C, Lamontagne M, et al. Conical-cavity fiber optic sensor for temperature measurement in a steel furnace[J]. Optical Engineering, 1993, 32(3): 486-493. DOI: 10.1117/12.60857

    [13] 宋扬. 光谱发射率在线测量技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.

    SONG Yang. Study of Spectral Emissivity on-line Measurement Technology[D]. Harbin: Harbin Institute of Technology, 2009.

    [14]

    Terada D, Takigawa R, Iuchi T. Automatically emissivity-compensated radiation thermometry [C]//Journal of Physics: Conference Series. IOP Publishing, 2018, 1065(12): 122008.

    [15]

    Krapez J C, Cielo P G, Lamontagne M. Reflecting-cavity IR temperature sensors: an analysis of spherical, conical, and double-wedge geometries[C]//Infrared Technology and Applications of SPIE, 1990, 1320: 186-201.

    [16]

    HUANG Shanjie, WANG Lingxue, HU Xu, et al. Research on accurate non-contact temperature measurement method for telescope mirror[J]. Optics Express, 2023, 31(13): 21521-21541. DOI: 10.1364/OE.492363

    [17]

    ZHU Chengxi, Hobbs M J, Willmott J R. An accurate instrument for emissivity measurements by direct and indirect methods[J]. Measurement Science and Technology, 2020, 31(4): 044007. DOI: 10.1088/1361-6501/ab5e9b

    [18]

    ZHU Chengxi. Design and realisation of high accuracy emissivity measurement instruments for radiation thermometry[D]. Sheffield: University of Sheffield, 2019.

    [19]

    CHE Xunjian, XIE Zhi. Development of ReFaST pyrometer for measuring surface temperature with unknown emissivity: methodology, implementation, and validation[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(7): 1845-1855. DOI: 10.1109/TIM.2017.2673038

    [20]

    WANG Junlin, XIE Zhi, CHE Xunjian. A novel accuracy validation method of surface temperature measurement by the ReFaST pyrometer[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 72: 1-9.

    [21]

    XIE Zhi, WANG Junlin, CHE Xunjian. Research on the methodology and instrument of traceable measurement of surface temperature based on an "ideal plane" model[J]. AIP Advances, 2022, 12(6): 065009. DOI: 10.1063/5.0088031

    [22]

    Bedford R E, MA C K, CHU Zaixiang, et al. Calculation of the radiant characteristics of a plane diffuse surface covered by a specular hemisphere[J]. Journal of Physics E: Scientific Instruments, 1988, 21(8): 785-791. DOI: 10.1088/0022-3735/21/8/009

    [23] 高魁明, 刘怀良, 陈万庆. 前置反射器辐射温度计的研究[J]. 东北大学学报(自然科学版), 1984, 5(3): 39-47.

    GAO Kuiming, LIU Huailiang, CHEN Wanqing. Study on radiation pyrometer preceded with a reflector[J]. Journal of Northeastern University (Natural Science), 1984, 5(3): 39-47.

    [24]

    ZHANG Z M, ZHOU Y H. An effective emissivity model for rapid thermal processing using the net-radiation method[J]. International Journal of Thermophysics, 2001, 22: 1563-1575.

    [25]

    ZHOU Y H, SHEN Y J, ZHANG Z M, et al. A Monte Carlo model for predicting the effective emissivity of the silicon wafer in rapid thermal processing furnaces[J]. International Journal of Heat and Mass Transfer, 2002, 45(9): 1945-1949.

    [26] 覃志豪, 李文娟, 徐斌, 等. 陆地卫星TM6波段范围内地表比辐射率的估计[J]. 国土资源遥感, 2004, 3(61): 28-36.

    QIN Zhihao, LI Wenjuan, XU Bin, et al. The estimation of land surface emissivity for Landsat TM6[J]. Remote Sensing of Land and Resources, 2004, 3(61): 28-36.

    [27] 唐建民, 郑志军. 人体皮肤和黑体[J]. 大学物理, 1990, 9(1): 46-46.

    TANG Jianmin, ZHENG Zhijun. Human skin and blackbody[J]. College Physics, 1990, 9(1): 46-46.

    [28] 深圳市景新浩科技有限公司. 红外线额温枪探头种类介绍[EB/OL] [2019-12-16]. http://www.jingxinhao.com/nd.jsp?id=58.DateModified.

    JEMHO Co., Ltd. Introduction to Types of Infrared Forehead Thermometer Probes [EB/OL]. [2019-12-16]. http://www.jingxinhao.com/djsp?id=58.DateModified.

    [29] 杨世铭, 陶文铨. 传热学[M]. 4版: 北京: 高等教育出版社, 2006.

    YANG Shiming, TAO Wenquan. Heat Transfer[M]. 4th Edition: Beijing: Higher Education Press, 2006.

    [30] 周世椿. 高级红外光电工程导论[M]. 北京: 科学出版社, 2014.

    ZHOU Shichun. Introduction to Advanced Infrared Optoelectronic Engineering[M]. Beijing: Science Press, 2014.

图(7)  /  表(4)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  18
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-03
  • 修回日期:  2024-09-28
  • 刊出日期:  2025-02-19

目录

    /

    返回文章
    返回