三维激光倒置扫描关键技术研究

张志鹏, 邵学君, 庞庆

张志鹏, 邵学君, 庞庆. 三维激光倒置扫描关键技术研究[J]. 红外技术, 2021, 43(8): 752-756.
引用本文: 张志鹏, 邵学君, 庞庆. 三维激光倒置扫描关键技术研究[J]. 红外技术, 2021, 43(8): 752-756.
ZHANG Zhipeng, SHAO Xuejun, PANG Qing. Research on the Key Technology of 3D Laser Inverted Scanning[J]. Infrared Technology , 2021, 43(8): 752-756.
Citation: ZHANG Zhipeng, SHAO Xuejun, PANG Qing. Research on the Key Technology of 3D Laser Inverted Scanning[J]. Infrared Technology , 2021, 43(8): 752-756.

三维激光倒置扫描关键技术研究

基金项目: 

中国铁路总公司科技研究开发计划重点项目 2016D001-C

详细信息
    作者简介:

    张志鹏(1982 -),男,内蒙古巴盟人,副研究员,硕士,主要从事铁路三维激光扫描技术研究,E-mail:zhangzp@rails.cn

  • 中图分类号: TP391

Research on the Key Technology of 3D Laser Inverted Scanning

  • 摘要: 对比常规三维激光正置扫描技术,研究了三维激光倒置扫描关键技术。研究倒置扫描入射角技术,确定了硬件三脚架倒置安装条件,满足合理的扫描入射角,达到点云的较好采集效果。在软件方面研究了高效自动去除噪点技术,实现倒置扫描噪点的自动高效去除。通过试验比较,采用三维激光倒置扫描关键技术,能够较好实现倒置扫描且扫描效果较好,降低了现场工作强度,提高了工作效率,拓展了三维激光扫描技术应用领域,为采用倒置扫描技术、自动高效噪点处理技术等方面提供参考,同时,也为红外技术在图像融合、影像信息识别、图像降噪等方面提供借鉴。
    Abstract: The key technologies of 3D laser inverted scanning are mainly studied through the introduction of conventional 3D laser positive scanning technology. The inverted scanning incident angle technology was researched, and the hardware tripod inverted installation conditions were determined to attain a reasonable scanning incident angle and achieve a good acquisition effect of point clouds. On the software side, the technology of efficient and automatic noise removal was examined to realize the automatic and efficient removal of noise in inverted scanning. Through experimental comparison, the key technology of 3D laser inversion scanning can be used to achieve better inversion scanning and scanning results. Moreover, it can be used to reduce the intensity of work, improve work efficiency, and expand the application field of 3D laser scanning. The application fields of 3D laser scanning technology have expanded, and can be used as a reference in the application of inverted scanning technology, automatic and high-efficiency noise processing technology, and so on. Furthermore, this method provides a reference for infrared technology in image fusion, image information recognition, image noise reduction, and so on.
  • 图  1   正置扫描示意图

    Figure  1.   Schematic diagram of forward scanning

    图  2   三维激光扫描流程图

    Figure  2.   Scanning flow chart

    图  3   倒置扫描示意图

    Figure  3.   Schematic diagram of inverted scanning

    图  4   扫描点云对比图

    Figure  4.   Scanning point cloud comparison

    图  5   不同入射角扫描点云效果

    Figure  5.   Scanning point cloud effect at different incident angles

    图  6   存在噪点的点云

    Figure  6.   Point cloud with noise

    图  7   噪点比较图

    Figure  7.   Noise comparison diagram

    图  8   正置扫描点云图

    Figure  8.   Forward scanning point cloud

    图  9   倒置扫描点云图

    Figure  9.   Inverted scanning point cloud

    图  10   去噪后的点云图

    Figure  10.   Point cloud image after denoising

  • [1] 国家市场监督管理总局. 铁路罐车和罐式集装箱容积三维激光扫描仪校准规范[S]. JJF1719-2018: 北京: 中国质检出版社, 2019.

    State Administration of market supervision. Calibration Specification for 3D Laser Scanner for Volume Measurements of Rail Tankers and Tank Containers[S]. JJF1719-2018: Beiing: China Quality Inspection Press, 2019.

    [2] 白汉学. 三维激光扫描仪伺服控制系统与数据采集系统的设计与实现[D]. 西安: 西北工业大学, 2003: 66-92.

    BAI Hanxue. Design and Implementation of Servo Control and Date Acquire System for 3D Laser Scanner[D]. Xi'an: Northwestern Polytechnical University, 2003: 66-92.

    [3] 蔡宽. 基于点云的三维重建技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    CAI Kuan. Research on 3D Reconstruction Technology Based on Point Cloud[D]. Dissertation of Harbin Institute of Technology, 2010: 38-86.

    [4] 傅青喜. 铁路罐车容积检定与计量[M]. 北京: 中国计量出版社, 2005: 9-29.

    FU Qingxi. Volume Verification and Measurement of Railway Tank Car. Beijing: China Metrology Publishing, 2005: 9-29.

    [5] 邵学君. 铁路罐车(箱)容积三维激光扫描测量方法[J]. 中国铁道科学, 2014(2): 79-85. DOI: 10.3969/j.issn.1001-4632.2014.02.13

    SHAO Xuejun. Three-dimensional laser scanning method for volume measurement of railway tank car (box)[J]. China Railway Science, 2014 (2): 79-85. DOI: 10.3969/j.issn.1001-4632.2014.02.13

    [6] 孙君顶, 赵慧慧. 图像稀疏表示及其在图像处理中的应用[J]. 红外技术, 2014(7): 533-537. http://hwjs.nvir.cn/article/id/hwjs201407004

    SUN Junding, ZHAO Huihui. Sparse representation and applications in image processing[J]. Infrared Technology, 2014(7): 533-537. http://hwjs.nvir.cn/article/id/hwjs201407004

    [7] 汪开理. 三维激光点云与全景影像匹配融合方法[J]. 测绘通报, 2013(12): 131-132. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201312041.htm

    WANG Kaili. A method of matching and fusion of 3D laser point cloud and panoramic image[J]. Mapping Bulletin, 2013 (12): 131-132. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201312041.htm

    [8]

    Behzad V Farahani, Francisco Barros, Mihai A Popescu, et al. Geometry acquisition and 3D modelling of a wind tower using a 3D laser scanning technology[J]. Procedia Structural Integrity, 2019(9): 712-717. http://www.sciencedirect.com/science/article/pii/S2452321619303014

    [9] 张靖, 周明全, 张雨禾, 等. 基于马尔可夫随机场的散乱点云全局特征提取[J]. 自动化学报, 2013(12): 131-132.

    ZHANG Jing, ZHOU Mingquan, ZHANG Yuhe, et al. Global feature extraction of scattered point cloud based on Markov random field[J]. Journal of Automation, 2013 (12): 131-132.

    [10] 张志鹏. 基于铁路罐车(箱)容积三维激光回波强度D模型的入射角特性研究[J]. 应用激光, 2017(4): 609-613. https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG201704024.htm

    ZHANG Zhipeng. Study on the geometric characters of D-model of the 3D laser scanning[J]. Applied Laser, 2017(4): 609-613. https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG201704024.htm

    [11] 毕超, 刘京亮, 刘飞, 等. 激光测头的光束空间矢量标定方法[J]. 红外与激光工程, 2015(12): 3775-3777. DOI: 10.3969/j.issn.1007-2276.2015.12.047

    BI Chao, LIU Jingliang, LIU Fei, et al. Calibration method of space vector of beam for point laser sensor[J]. Infrared and Laser Engineering, 2015(12): 3775-3777. DOI: 10.3969/j.issn.1007-2276.2015.12.047

    [12]

    Bruno Silva Marció, Philipp Nienheysen, Daniel Habor, et al. Quality assessment and deviation analysis of three-dimensional geometrical characterization of a metal pipeline by pulse-echo ultrasonic and laser scanning techniques[J]. Measurement, 2019(10): 30-37.

    [13] 谢雄耀, 卢晓智, 田海洋, 等. 基于地面三维激光扫描技术的隧道全断面变形测量方法[J]. 测绘通报, 2016(2): 143-144. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201602037.htm

    XIE Xiongyao, LU Xiaozhi, TIAN Haiyang, et al. Development of a modeling method for monitoring tunnel deformation based on terrestrial 3D laser scanning[J]. Bulletin of Surveying and Mapping, 2016(2): 143-144. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201602037.htm

    [14]

    Siwei Chen, Megan L Walske, Ian J Davies. Rapid mapping and analyzing rock mass discontinuities with 3D terrestrial laser scanning in the underground excavation[J]. International Journal of Rock Mechanics and Mining Sciences, 2018(10): 28-35. http://www.sciencedirect.com/science/article/pii/S1365160917309589

    [15]

    Johannes Schauer, Andreas Nüchter. Removing non-static objects from 3D laser scan data[J]. Journal of Photo Grammetry and Remote Sensing, 2018(7): 21-26. http://www.sciencedirect.com/science/article/pii/S0924271618301527

    [16] 郭震冬, 黄亮, 顾正东, 等. 三维激光扫描技术在古建筑测量中的应用[J]. 智能城市, 2019(9): 1-2. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNCS201918002.htm

    GUO Zhendong HUANG liang GU Zhengdong et al. Application of 3D laser scanning technique in ancient building survey[J]. Intelligent City, 2019(9): 1-2. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNCS201918002.htm

    [17]

    Daniel Nåfors, Maja Bärring, Maxime Estienne, et al. Supporting discrete event simulation with 3D laser scanning and value stream mapping: benefits and drawbacks[J]. Procedia CIRP, 2018(7): 1536-1541. http://www.sciencedirect.com/science/article/pii/S2212827118303779

图(10)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  80
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-07
  • 修回日期:  2021-07-29
  • 刊出日期:  2021-08-19

目录

    /

    返回文章
    返回