Research Progress of Silicon-based BIB Infrared Detector
-
摘要: 以锗基和硅基为主的阻挡杂质带(blocked impurity band,BIB)红外探测器的兴起有力推进了红外天文学的快速发展,其中硅基BIB红外探测器在特定波长的航天航空领域有着不可替代的地位。国外对硅基BIB红外探测器的研究已有40多年,以美国航空航天局(NASA)为主的科研机构已经实现了硅基BIB红外探测器在天文领域的诸多应用,而国内对硅基BIB红外探测器的研究尚处于起步阶段。本文首先阐述了硅基BIB红外探测器的工作原理,然后简单概述了器件结构和制备工艺,并对不同类型的硅基BIB探测器的性能进行了对比分析,之后介绍了其在天文探测中的应用,最后对硅基BIB红外探测器未来的发展进行了展望。Abstract: The rise of blocked impurity band (BIB) infrared detectors based on germanium and silicon has promoted the rapid development of infrared astronomy, among which silicon-based BIB infrared detectors with specific wavelengths play an irreplaceable role in the aerospace field. Research on silicon-based BIB infrared detectors has been conducted abroad for more than 40 years, and many of its applications in the astronomical field have been realized by NASA and its related research institutes. However, domestic research on silicon-based BIB infrared detectors is still in its infancy. In this paper, the working principle of silicon BIB infrared detectors is described first; then, the structure and fabrication process of the device are briefly summarized, the performance of different types of silicon BIB detectors is compared and analyzed, and its application in astronomical detection is described. Finally, the future development of silicon BIB infrared detectors is discussed.
-
Keywords:
- silicon-based BIB /
- infrared detector /
- astronomical detection
-
0. 引言
带式输送机是一种现代化生产中的连续运输设备,具有运量大、运距远、运费低、效率高、能耗小、运行平稳、装卸方便、适合于散料运输等优点,与汽车、火车一起成为三大主力工业运输工具,已广泛应用于煤炭、矿山、港口、电力、冶金、化工等领域[1]。温度是带式输送机的一个重要指标,通过温度检测能够检测带式输送机的托辊、电机、滚筒等故障,GB/T 3467.9-2017《智慧矿山信息系统通用技术规范》[2]规定对带式输送机温度进行检测,带式输送机综合保护系统中的八大保护装置也包括温度保护。目前带式输送机的测温仪主要采用PT100传感器进行检测,其测温范围窄、分辨率低、准确性差;接触式检测,容易受到外力而损坏,可靠性差。
本文提出了一种带式输送机本质安全型红外测温仪设计方案,采用MLX90614红外传感器[3]和STM32F103C8T6处理器设计了其硬件;在Keil 5.14开发平台上,采用C语言设计了其软件。
1. 红外测温仪设计方案
红外测温仪由处理器电路、温度传感器电路、频率量转换电路、4~20 mA转换电路、数码管显示电路、报警电路、激光定位电路、按键及指示灯电路、数据存储电路、串口通信电路、程序下载接口电路和供电电路组成,其组成框图如图 1所示[4]。
温度传感器电路完成温度采集功能;频率量转换电路将采集到的温度数据转换成频率量输出;4~20 mA转换电路将采集到的温度数据转换成4~20 mA电流信号输出;数码管显示电路将采集到的温度数据显示出来;报警电路完成报警功能;激光定位电路用来给使用者指示被测物体的准确位置;按键电路完成参数设置功能;数据存储电路完成发射率等数据存储功能;串口通信电路用作调试;程序下载电路将程序下载到处理器电路中;供电电路为整个电路供电;处理器电路完成数据接收、处理及各部分电路驱动功能。
红外测温仪用来实现固定物体的温度检测。物体的红外辐射能量的大小及其按波长的分布与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确测量它的表面温度。MLX90614红外传感器电路用来采集固定物体红外能量,处理器电路驱动温度传感器电路,将采集到的温度数据转换成频率量和4~20 mA电流输出,并通过数码管显示电路显示出来。激光定位电路用来辅助使用者来确定温度传感器采集温度数据的准确位置。使用者可通过按键及指示灯电路设置高低温报警阈值及发射率等参数,设置完成后,参数保存在数据存储电路中。当监测到被测物体的温度超出报警阈值会通过报警电路进行报警。
2. 红外测温仪硬件电路设计
2.1 温度传感器电路设计
温度传感器选用美国迈来芯公司的MLX90614,采集温度范围为-70℃~380℃,精度为0.14℃,辐射角度为10,SMBUS总线输出[5]。电路图如图 2所示。
2.2 处理器电路设计
核心处理器选用意法半导体公司的STM32F103C8T6,采用Cortex M3内核,主频高达72 MHz,功耗低,适合做本质安全电路设计。电路图如图 3所示。
2.3 本质安全型电源电路设计
本质安全型电源是指符合GB3836.1-2010爆炸性环境第1部分:设备通用要求[6]和GB3836.4-2010爆炸性环境第4部分:由本质安全型“i”保护的设备[7]中的相关规定,可以在爆炸性气体环境中使用。为符合本质安全型电路要求,本设计采用美国凌力尔特公司的LT4356CS-1芯片,该芯片具有过流和过压保护功能,且过流和过压保护值可调节,采用双重化设计。该电源通过了国家煤矿防爆安全产品质量监督检验中心的检验,并取得了检验报告、防爆证和安全标志证书。该电源的部分电路如图 4所示。
2.4 频率量转换电路设计
频率量转换是在核心处理器中完成的,外围驱动电路采用飞利浦公司的HEF4093BT,该芯片采用CMOS工艺,输出高低电平接近电源电压或地电位,对于外部接口电路来说,兼容性更好;每个输入引脚内部内置一个施密特触发器,输入信号的抗干扰能力更强。电路图如图 5所示。
2.5 4~20 mA转换电路设计
4~20 mA转换电路采用ADI公司的AD421,该芯片将接收到的数字信号转换成模拟信号[8],并完成模拟信号到4~20 mA电流环信号的转换。电路图如图 6所示。
2.6 数码管显示电路设计
数码管显示电路选用4位数码管显示3位数字和1位符号位,驱动芯片采用2片74HC595串联,该电路具有成本低廉,易于驱动的特点。
2.7 报警电路设计
报警电路将来自核心处理器的报警信号通过达林顿管放大输出驱动蜂鸣器。
2.8 激光定位电路设计
激光定位电路采用3 V激光二极管,主要作用在于指示被测位置,因此设计将激光二极管光线与温度传感器方向尽量靠近且平行。
2.9 按键及指示灯电路设计
按键电路用于设置发射率、高低温报警阈值等参数,指示灯电路用于指示正在设置哪个参数。
2.10 数据存储电路设计
数据存储电路用于存储高低温报警阈值,发射率等信息,采用AT24C02,驱动简单,成本低廉。
2.11 串口通信电路设计
串口通信电路主要用于调试及后期维护,选用MAX3232,电路简单,成本低廉。
2.12 程序下载电路设计
程序下载电路设计为SWD接口,四线下载,节省电路板空间。
2.13 供电电路设计
系统供电电路选用MPS公司的MP2259,开关频率1.4 MHz,输出电流1 A,采用SOT23-5封装,体积小,并且由于工作频率较高,输出纹波小,外部电感和电容的体积也较小,节省了电路板空间。
3. 红外测温仪软件设计
测温仪软件设计是在Keil 5.14开发平台上进行的,使用语言为C语言。系统软件整体设计思路是这样的:主程序采用自顶向下设计方法,首先完成各个模块初始化及中断初始化,然后循环执行温度传感器MLX90614读出程序和设置发射率及高低温报警阈值程序,而各个模块子程序是通过中断方式得到执行。图 7表示了主程序的设计流程:程序一开始进行中断初始化和各模块初始化,接着进入循环,在循环中依次执行读出高低温报警阈值和温度报警值,计算要显示的温度数据、要输出的频率量及电流值数据,最后调用按键扫描子程序。在程序执行的过程中,如果有按键按下,则进入按键中断服务程序进行处理。
3.1 温度传感器数据采集模块设计
由于温度传感器MLX90614通信接口为SMBUS,所以首先设计SMBUS底层驱动程序,然后根据MLX90614数据手册时序图设计顶层程序,主要分为4个函数:MLX90614初始化函数,MLX90614读函数,MLX90614写函数,MLX90614数据转换函数。
3.2 数码管显示模块设计
由于数码管驱动采用2片74HC595串联,所以驱动数码管也就是驱动74HC595。74HC595为数据移位寄存器,串行输入,并行输出。程序分为3个子程序:数码管驱动I/O初始化函数,595输入函数,595输出函数。
3.3 按键输入模块设计
按键扫描子程序采用有限状态机方法实现,分为没有任何按键按下状态、按键按下确认状态、按键短按下状态、按键长按下状态,其状态转换如图 8所示。
3.4 数据存储模块设计
数据存储子程序分为IIC底层驱动和芯片驱动。底层驱动包括IIC初始化、产生起始信号,产生停止信号、等待应答信号、产生应答信号、产生非应答信号、发送一个字节、接收一个字节等几个函数。芯片驱动包括:芯片初始化、芯片检测、读出一个字节、写入一个字节、读出N个字节、写入N个字节、从指定地址读出指定的字节数、写入到指定地址指定的字节数等几个函数。
3.5 串口通讯模块设计
串口通讯子程序包括串口初始化、串口发送和串口接收3个子程序。
3.6 频率转换模块设计
由于读出的温度数据为数字量,所以设计公式将数字量转换成频率量,其公式如下:
$$ f = 2*\left\{ {\left[ {\left( {{\rm{DATA*2}}} \right) - 27315} \right]/100} \right\} + 240 $$ (1) 式中:f为频率,DATA为16位温度数值。
3.7 4~20 mA转换模块设计
想要将温度数据转换成4~20 mA的电流信号,首先应该将温度传感器采集到的数值转换成AD421输入范围内的数值,设计的公式如下所示,然后只需按照AD421的数据手册写出驱动程序即可,共有3个信号需要驱动:时钟、锁存、数据,程序比较简单,不再详述。
$$ {\rm{dac\_input\_data}} = 3.27675*{\rm{DATA - 41474}} $$ (2) 其中dac_input_data为AD421输入数值,DATA为温度传感器采集到的数值。
3.8 定时器模块设计
考虑到各个模块实时响应的需求,主程序采用中断的方式,因而需要定时器来调度。本设计用到了3个定时器:定时器2、定时器3和定时器4。定时器2负责周期性调用显示子程序、定时器3负责周期性调用报警子程序,定时器4负责周期性调用按键子程序。优先级顺序为:定时器2>定时器3>定时器4。
4. 实验结果及分析
通过对测温仪的实验与调试,分别测试各模块的功能实现情况。利用示波器及Keil 5开发平台自带的逻辑分析仪进行分析,各模块均可实现相应的功能。
4.1 温度传感器数据采集模块验证
首先发送SLA地址,然后判断接收到的应答信息,如果应答为非应答信号,则发送停止位,并转到程序起始处重新执行,否则继续向下执行。判断流程同上。接着发送SLA+1,判断流程同上。接下来按顺序读取数据低字节和高字节,并存入预先定义好的缓冲区寄存器。再接下来读取PEC码(PEC码为一种CRC-8校验码),并根据多项式X8+X2+X+1,计算出结果,与读取到的PEC码进行比较。如果相同,则表示读到的数据正确,否则错误,丢弃数据,并返回程序起始位置重新读取数据。示波器采集到的时序波形如图 9示。煤矿井下输送带宽度一般为0.8~2.4 m之间,测温仪与被测物体之间的安装示意图如图 10所示,可以看到,温度传感器安装在距离电机3 m处,就可以使测温仪的目标视场内全部为被测电机,从而保证了测温的准确性。需要注意的是,煤矿井下电机的材质一般为铸铁,发射率在0.6~0.95之间,需要设置正确的发射率,才能保证测温的准确度。测量到的煤矿井下带式输送机电机温度与实际电机温度对比如图 11所示。
4.2 频率量转换模块验证
频率量转换模块将-20℃~380℃的温度值转换成200~1000 Hz的标准频率量信号输出,图 12展示了温度值、理论上频率量输出值、实测频率量输出值对应关系。
4.3 4~20 mA转换模块验证
4~20 mA转换模块将-20℃~380℃的温度值转换成4~20 mA标准电流环信号输出,十六进制温度值与输出电流环信号对比在AD421数据手册中可以查到,如图 13(a)所示。实际测得的温度值与4~20 mA电流输出如图 13(b)所示。
4.4 报警模块验证
报警模块在温度低于低温报警阈值,或者温度高于高温报警阈值时报警[10],其报警信号为周期4 s的方波,示波器采集到的报警信号波形如图 14所示。
4.5 按键设置模块验证
按键设置模块实现发射率的设置以及高低温报警阈值的设置。可以在任何时候按下MENU键,然后根据实际情况按下UP或DOWN键,依次设置低温报警阈值、高温报警阈值、发射率,每次设置完按OK键退出。程序可以实现长按UP/DOWN键快速调整数值功能。3个参数都设置完成后自动进行测温。实验结果如图 15所示。
5. 结束语
本文研制的本质安全型红外测温仪采用MLX90614红外传感器和STM32F103C8T6处理器设计了其硬件;在Keil 5.14开发平台上,采用C语言设计了其软件,能够将测量温度显示在高亮度数码管上,并以频率量和4~20 mA电流信号输出。该测温仪外壳与MLX90614之间放置一层隔热棉,以保证MLX90614感温准确,MLX90614辐射角度为10,覆盖物体面积更小,使测温准确度得到了保证,测温范围宽-20℃~380℃,分辨率高,测温准确,温度测量精度为±0.5℃;非接触测量,不易损坏,可靠性高。
-
图 2 硅基BIB红外探测器的结构和工作原理:(a) 非本征硅光电导探测器的工作原理示意图[10];(b) 硅基BIB红外探测器的工作原理图[11];(c) Si: As BIB红外探测器结构示意图[13];(d) Si: Sb BIB红外探测器的器件结构图[14];(e) 背照射式Si: Sb BIB探测器的结构示意图,其中Nd为中性施主的密度,Nd+为电离施主的浓度,Na-为电离受主的浓度[15];(f) Si: Sb BIB探测器的红外吸收层在正的反偏电压下的平衡电荷分布图[15]
Figure 2. Structures and working mechanisms of silicon-based BIB infrared detectors: (a) Schematic diagram of the working principle of the ESPC detector[10]; (b) Schematic diagram of the working principle of the silicon-based BIB infrared detector[11]; (c) Structure diagram of the Si: As BIB infrared detector[13]; (d) Structure diagram of the Si: Sb BIB infrared detector[14]; (e) Schematic diagram of the back-illuminated Si: Sb BIB, where Nd is the density of neutral donors, Nd+ is the ionized donor density, and Na- is the density of ionized acceptors[15]; (f) Equilibrium charge distributions for the positive reverse-biased operation for the Si: Sb BIB infrared detector[15]
图 3 硅基BIB红外探测器的性能:(a) 用于Si: As IBC探测器辐射测试的低温杜瓦装置[38];(b) 测试及计算得到的Si: As IBC探测器的响应量子效率曲线[38];(c) Si: As IBC探测器的I-V测试曲线[38];(d) 金属管壳封装的Si: Sb BIB探测器[14];(e) Si: Sb BIB探测器的光谱量子效率曲线[14];(f) Si: Sb BIB探测器的暗电流与温度的关系[14];(g) Si: P BIB器件的PC光谱与远红外背景光谱,以及响应峰的指定[39];(h) Si: Ga BIB探测器的光谱量子效率[40];(i) Si: Ga BIB探测器与长波碲镉汞探测器的暗电流对比[40]
Figure 3. Performances of the silicon-based BIB infrared detectors: (a) Dewar configuration for Si: As IBC detector radiation testing[38]; (b) Responsive quantum efficiency curves of Si: As IBC detector[38]; (c) I-V testing curves of Si: As IBC detector[38]; (d) Metal shell packed Si: Sb BIB detector[14]; (e) Spectral quantum efficiency curve of Si: Sb BIB detector[14]; (f) Dark current as a function of temperature of Si: Sb BIB detector, measured at 1.5 V bias voltage[14]; (g) PC spectrum of the Si: P BIB device versus far-infrared background spectrum, and the designations of the response peak[39]; (h) Spectral QE of Si: Ga BIB detector[40]; (i) Dark current performance comparison of Si: Ga BIB detector with LWMCT detector[40]
图 5 国外硅基BIB红外探测器的研究进展:(a) 空间红外望远镜设备(SIRTF)上的128×128长波长红外焦平面组件[29];(b) DRS公司的HF1024焦平面阵列,封装在84针无铅芯片载体上[40];(c) 百万像素中红外阵列裸多路复用器[54];(d) 无掺杂单晶衬底晶圆[54];(e) Si: As BIB焦平面阵列的封装[55];(f) 256×256 Si: As IBC阵列及其航天封装[57];(g) 1024×1024 Si: As IBC阵列的红外传感器芯片[53];(h) 1024×1024 Si: As IBC阵列的读出电路[58];(i) 由双侧可粘扣的HF1024 Si: As和Si: Sb焦平面阵列组成的2048×2048焦平面阵列,像元间距为18 μm[40]
Figure 5. Research progresses of overseas silicon-based BIB infrared detectors: (a) SIRTF 128×128 long wavelength infrared focal plane array assembly[29]; (b) DRS HF1024 FPA packaged in 84-pin leadless chip carrier[40]; (c) A Mega pixel MIR bare multiplexer[54]; (d) Undoped single-crystal substrate wafer[54]; (e) Packaging of the BIB focal plane arrays[55]; (f) 256×256 Si: As IBC array in flight mount[57]; (g) Photo of a 1024×1024 Si: As IBC SCA[53]; (h) SB-291 ROIC for 1024×1024 Si: As IBC array[58]; (i) 2048×2048 FPA with 18-micron pixel pitch composed of 2-side buttable HF1024 Si: As and Si: Sb FPAs[40]
图 6 国内硅基BIB红外探测器的研究进展:(a) 平面型Si: P BIB探测器结构示意图[65];(b) 垂直型Si: P BIB探测器模型[58];(c) Si: P BIB探测器在2 V偏压和不同温度下的响应光谱[58];(d) 等离子体调谐太赫兹探测器横截面示意图[59];(e) 不同周期性孔结构(PHSs)的Si: P BIB探测器的归一化光电流谱[59];(f) Si: Ga BIB探测器在不同功能区上的层状材料结构示意图[60];(g) Si: Ga BIB探测器不同温度下的响应谱[60];(h) 金属光栅/硅基BIB太赫兹探测器的工作原理图[61];(i) 有金属光栅的器件(参数:p=7 μm,d=5 μm,DR=2/7)与无金属光栅的器件的实验光谱响应对比[61]
Figure 6. Research progresses of domestic silicon-based BIB infrared detectors: (a) Schematic diagram of the planar type Si: P BIB detector structure[65]; (b) Vertical type Si: P BIB detector model[58]; (c) Response spectrum of the Si: P BIB detector at 2 V bias voltage with different temperatures[58]; (d) Schematic representation of the cross section of the plasma-tuning THz detector[59]; (e) The normalized photocurrent spectrum of the Si: P BIB detectors for different periodic pore structures (PHSs)[59]; (f) Schematic diagram of the layered material structure of the Si: Ga BIB detector in different functional areas[60]; (g) Response spectrum of the Si: Ga BIB detector at different temperatures[60]; (h) Mechanism of the metal-grating/silicon-based BIB THz detector[61]; (i) Comparison of the experimental spectral response of devices with metal gratings (parameters: p=7 μm, d=5 μm, DR=2/7) with devices with metal-free gratings[61]
图 7 硅基BIB红外探测器的天文应用[72]:(a) 斯皮策太空望远镜;(b) 斯皮策太空望远镜观测到的“红蝴蝶”星系;(c) WISE捕捉的最古老的超新星RCW 86的图像;(d) 水瓶座/SAC-D航天探测器;(e) 平流层天文台;(f)平流层天文台捕捉的恒星合并的快照;(g) 詹姆斯·韦伯空间望远镜(JWST);(h) JWST的近红外照相机捕捉的第一张全彩图像;(i) COBE在太空中运行的示意图
Figure 7. Astronomical applications of the silicon-based BIB infrared detectors[72]: The spitzer space telescope; (b) The "red butterfly" galaxy was observed by the spitzer space telescope; (c) An image of the oldest supernova RCW 86 captured by WISE; (d) The aquarius/SAC-D space probe; (e) Stratospheric observatory for infrared astronomy; (f) Snapshot of stellar mergers captured by SOFIA; (g) The James Webb Space Telescope; (h)The first full color image captured by the near-infrared camera of the JWST; (i) Schematic representation of the cosmic background explorer operating in space
表 1 硅基BIB红外探测器的部分工艺参数
Table 1 Partial process parameters of the silicon-based BIB infrared detector
Year Material Thickness of IRAL/μm Thickness of blocking layer/μm Doping concentration of IRAL/cm-3 Fabrication method of epitaxial layer Institution Ref. 1979 Si: As 6−10 1−4 7×1017 CVD Rockwell [11] 1992 Si: Sb 17 3.5 1−8×1017 CVD Rockwell [15] 1999 Si: B 4.5 3 1×1018 - - [16] 2007 Si: As 10 - 4×1018 - DRS [17] 2007 Si: P - - 4×1018 - DRS [17] 2018 Si: As 15 - 1×1018 - NIST [18] 表 2 国外公司生产的硅基BIB红外探测器的性能参数
Table 2 Performance parameters of silicon-based BIB infrared detectors produced by foreign companies
Year Material Technology FPA format Pixel size/μm2 Pixel pitch/μm Operating temperature range/K Wavelength
range/μmDark current Quantum efficiency/% Institution Applications Ref. 2012 Si: Sb BIB 1024×1024 18 - 5-12 14-38 0.1 e/s 60 DRS Wide-field infrared survey explorer [14] 1992 Si: Sb BIB 128×128 - - 7 2-40 - - Rockwell Space infrared telescope facility [15] 2018 Si: As BIB - - - 7-10 2-30 10-12 A/mm2 60 NIST Missile defense transfer radiometer [18] 1986 Si: As BIB 10×50 - - 12 - 12.3 pA - Rockwell - [19] 1991 Si: As BIB 128×128 75 - 11 - < 0.1 nA - Rockwell Space infrared telescope facility [20] 1993 Si: As BIB 256×256 30 - 12 - 18 e-/s 57 HTC Space infrared telescope facility [21] 1995 Si: Ga ESPC 128×192 75 - ≤10 5-17 0 30 LETI/LIR European transonic windtunnel [22] 1998 Si: As BIB 256×256 30 - 6-7 - < 100 e-/s 40 RVS Infrared imaging surveyor [23] 1998 Si: As BIB 320×240 - 50 6 2-28 100 e-/s 40-55 SBRC SUBARU [24] 2000 Si: As BIB 256×256 - 25 6 5-28 3.8 e-/s 84 RVS Space infrared telescope facility [25] 2001 Si: As BIB 320×240 - 50 6-12 2-28 ≤100 e-/s > 40 RVS Mid-infrared spectrometer and imager [26] 2001 Si: As BIB 1024×1024 - 27 6-8 5-30 0.3 e-/s 45 RVS Next generation space telescope [27] 2001 Si: As BIB 1024×1024 - 27 6 5-30 < 1 e-/s 50 RVS Stratospheric observatory for infrared astronomy [28] 2003 Si: As BIB 128×128 - 75 - - 0.49-2.9 e-/s 84 DRS Wide-field infrared explorer [29] 2003 Si: Sb BIB 128×128 - 75 - - 5.3-12.9 e-/s 51 DRS Wide-field infrared explorer [29] 2003 Si: As BIB 256×256 50 - 4.7 5-25 - 56 DRS Stratospheric observatory for infrared astronomy [30] 2004 Si: As BIB 256×256 25 - 6.7-7.1 5-28 0.1 e-/s > 50 RVS James Webb space telescope [31] 2005 Si: As BIB 1024×1024 - 18 6 5-28 < 10 e-/s > 57 DRS Wide-field infrared survey explorer/James Webb space telescope [32] 2006 Si: As BIB 1024×1024 - 18 7.8 7.5-28 < 100 e-/s > 60 DRS Wide-field infrared survey explorer [33] 2008 Si: As BIB 1024×1024 30 - 7-9 3-28 1 e-/s > 40 RVS AQUARIUS [34] -
[1] McCreight C R, McKelvey M E, Goebel J H, et al. Detector arrays for low-background space infrared astronomy[C]//Infrared detectors, Sensors, and Focal Plane Arrays of SPIE, 1986, 686: 66-75.
[2] Szmulowicz F, Madarasz F L. Blocked impurity band detectors—an analytical model: figures of merit[J]. Journal of Applied Physics, 1987, 62(6): 2533-2540. DOI: 10.1063/1.339466
[3] Battersby C, Armus L, Bergin E, et al. The origins space telescope[J]. Nature Astronomy, 2018, 2(8): 596-599. DOI: 10.1038/s41550-018-0540-y
[4] 刘恩科, 朱秉升, 罗晋生. 半导体物理学: 7版[M]. 北京: 电子工业出版社, 2017. LIU Enke, ZHU Bingsheng, LUO Jingsheng. The Physics of Semiconductors: 7th Edition[M]. Beijing: Publishing House of Electronics Industry, 2017.
[5] CHEN H C, LIN C C, HAN H W, et al. Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers[J]. Optics Express, 2011, 19(105): A1141-A1147.
[6] JUANG J Y, ZHOU K, BANG J H, et al. Improved photovoltaic performance of Si nanowire solar cells integrated with ZnSe quantum dots[J]. The Journal of Physical Chemistry C, 2012, 116(23): 12409-12414. DOI: 10.1021/jp301683q
[7] WU C, Crouch C H, ZHAO L, et al. Near-unity below-band-gap absorption by microstructured silicon[J]. Applied Physics Letters, 2001, 78(13): 1850-1852. DOI: 10.1063/1.1358846
[8] Crouch C, Carey J, Shen M, et al. Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation[J]. Appl Phys A, 2004, 79: 1635-1641. DOI: 10.1007/s00339-004-2676-0
[9] ZHANG T, Ahmad W, LIU B, et al. Broadband infrared response of sulfur hyperdoped silicon under femtosecond laser irradiation[J]. Materials Letters, 2017, 196: 16-19. DOI: 10.1016/j.matlet.2017.03.011
[10] 王占国, 郑有炓. 半导体材料研究进展[M]. 北京: 高等教育出版社, 2012. WANG Zhanguo, ZHENG Youliao. Research Progress in Semiconductor Materials[M]. Beijing: Publishing House of Higher Education, 2018.
[11] Petroff M D, Stapelbroek M G. Blocked Impurity Band Detectors: 4568 960[P]. U.S. Patent, 1986-02-04.
[12] Petroff M D, Stapelbroek M G. Responsivity and noise models of blocked impurity band detectors[C]//Proc. IRIS Specialty Group on Infrared Detectors, 1984, 2.
[13] Rieke G H. Infrared detector arrays for astronomy[J]. Annu. Rev. Astron. Astrophys. , 2007, 45: 77-115. DOI: 10.1146/annurev.astro.44.051905.092436
[14] Khalap V, Hogue H. Antimony-doped silicon blocked impurity band (BIB) arrays for low flux applications[C]//Infrared Sensors, Devices, and Applications Ⅱ. International Society for Optics and Photonics, 2012, 8512: 85120O.
[15] Huffman J E, Crouse A G, Halleck B L, et al. Si: Sb blocked impurity band detectors for infrared astronomy[J]. Journal of Applied Physics, 1992, 72(1): 273-275. DOI: 10.1063/1.352127
[16] Asadauskas L, Brazis R, Leotin J. Optical phonon line in boron-doped silicon BIB structures[C]//Materials Science Forum. Trans Tech Publications Ltd., 1999, 297: 361-364.
[17] Hogue H H, Guptill M T, Monson J C, et al. Far-infrared blocked impurity band detector development[C]//Infrared Spaceborne Remote Sensing and Instrumentation XV of SPIE, 2007, 6678: 63-73.
[18] Woods S I, Proctor J E, Jung T M, et al. Wideband infrared trap detector based upon doped silicon photocurrent devices[J]. Applied Optics, 2018, 57(18): D82-D89. DOI: 10.1364/AO.57.000D82
[19] Stetson S B, Reynolds D B, Stapelbroek M G, et al. Design and performance of blocked-impurity-band detector focal plane arrays[C]//Infrared Detectors, Sensors, and Focal Plane Arrays of SPIE, 1986, 686: 48-65.
[20] Noel R A. Large-area blocked-impurity-band focal plane array development[C]//Infrared Detectors and Focal Plane Arrays Ⅱ of SPIE, 1992, 1685: 250-259.
[21] Lum N A, Asbrock J F, White R, et al. Low-noise, low-temperature 256 ×256 Si: As IBC staring FPA[C]//Infrared Detectors and Instrumentation of SPIE, 1993, 1946: 100-109.
[22] Suffis S, Caes M, Deliot P, et al. Characterization of 128×192 Si: Ga focal plane arrays: study of nonuniformity, stability of its correction, and application for the CRYSTAL camera[C]//Infrared Detectors and Focal Plane Arrays Ⅴ of SPIE, 1998, 3379: 235-248.
[23] Matsuhara H. IRC: an infrared camera on board the IRIS[C]//Infrared Astronomical Instrumentation of SPIE, 1998, 3354: 915-921.
[24] Sohn E, Schneider E R, Cruz-Gonzales I, et al. Mid-infrared camera/spectrograph for OAN/SPM[C]//Infrared Astronomical Instrumentation, 1998, 3354: 822-824.
[25] McMurray Jr R E, Johnson R R, McCreight C R, et al. Si: As IBC array performance for SIRTF/IRAC[C]//Infrared Spaceborne Remote Sensing Ⅷ of SPIE, 2000, 4131: 62-69.
[26] Deutsch L K, Hora J L, Adams J D, et al. MIRSI: a mid-infrared spectrometer and imager[C]//Instrument Design and Performance for Optical/Infrared Ground-based Telescopes of SPIE, 2003, 4841: 106-116.
[27] Ennico K A, McKelvey M E, McCreight C R, et al. Large format Si: As IBC array performance for NGST and future IR space telescope applications[C]//IR Space Telescopes and Instruments of SPIE, 2003, 4850: 890-901.
[28] Ennico K A, Greene T P, McCreight C R, et al. Development and testing of a 1024×1024 pixel Si: As IBC detector for SOFIA-like applications[C]//Airborne Telescope Systems Ⅱ of SPIE, 2003, 4857: 155-165.
[29] Hogue H H, Guptill M L, Reynolds D, et al. Space mid-IR detectors from DRS[C]//IR Space Telescopes and Instruments, 2003, 4850: 880-889.
[30] Adams J D, Herter T L, Keller L D, et al. Testing of mid-infrared detector arrays for FORCAST[C]//Optical and Infrared Detectors for Astronomy of SPIE, 2004, 5499: 442-451.
[31] Love P J, Hoffman A W, Lum N A, et al. 1024×1024 Si: As IBC detector arrays for JWST MIRI[C]//Focal Plane Arrays for Space Telescopes Ⅱ of SPIE, 2005, 5902: 58-66.
[32] Mainzer A K, Hong J, Stapelbroek M G, et al. A new large-well 1024×1024 Si: As detector for the mid-infrared[C]//Infrared and Photoelectronic Imagers and Detector Devices of SPIE, 2005, 5881: 253-260.
[33] Mainzer A, Larsen M, Stapelbroek M G, et al. Characterization of flight detector arrays for the wide-field infrared survey explorer[C]//High Energy, Optical, and Infrared Detectors for Astronomy Ⅲ of SPIE, 2008, 7021: 302-313.
[34] Ives D, Finger G, Jakob G, et al. AQUARIUS: the next generation mid-IR detector for ground-based astronomy[C]//High Energy, Optical, and Infrared Detectors for Astronomy Ⅴ of SPIE, 2012, 8453: 296-308.
[35] Reynolds D B, Seib D H, Stetson S B, et al. Blocked impurity band hybrid infrared focal plane arrays for astronomy[J]. IEEE Transactions on Nuclear Science, 1989, 36(1): 857-862. DOI: 10.1109/23.34565
[36] Petroff M D, Stapelbroek M G. Blocked Impurity Band Detectors, Radiation Hard, High Performance LWIR Detectors[C]//Proceedings, IRIS Specialty Group on Infrared Detectors, 1980: 48-62.
[37] Mainzer A, Larsen M, Stapelbroek M G, et al. Characterization of flight detector arrays for the wide-field infrared survey explorer[C]//High Energy, Optical, and Infrared Detectors for Astronomy Ⅲ of SPIE, 2008, 7021: 302-313.
[38] Ando K J, Hoffman A W, Love P J, et al. Development of Si: As impurity band conduction (IBC) detectors for mid-infrared applications[C]//Infrared Technology and Applications XXIX, 2003, 5074: 648-657.
[39] LIAO K, LI N, LIU X, et al. Ion-implanted Si: P blocked-impurity-band photodetectors for far-infrared and terahertz radiation detection[C]//International Symposium on Photoelectronic Detection and Imaging on Terahertz Technologies and Applications of SPIE, 2013, 8909: 257-265.
[40] Hogue H, Atkins E, Reynolds D, et al. Update on blocked impurity band detector technology from DRS[C]//Detectors and Imaging Devices: Infrared, Focal Plane, Single Photon. International Society for Optics and Photonics, 2010, 7780: 778004.
[41] Sclar N. Properties of doped silicon and germanium infrared detectors[J]. Progress in Quantum Electronics, 1984, 9(3): 149-257. DOI: 10.1016/0079-6727(84)90001-6
[42] Kleinhans W A, Petroff M D, Stapelbroek M G. Hybrid Si: As BIBIB Detector Arrays[C/OL]//Proc. of IRIS Specialty Group on Infrared Detectors, 1984: https://www.researchgate.net/profile/George-Gull/publication/234236444_Improved_SiAs_BIBIB_Back-Illuminated_Blocked-Impurity-Band_hybrid_arrays/links/0f317537a14b676810000000/Improved-SiAs-BIBIB-Back-Illuminated-Blocked-Impurity-Band-hybrid-arrays.pdf.
[43] Fowler A M, Joyce R R. Status of the NOAO evaluation of the Hughes 20x64 Si: As impurity band conduction array[C]//Instrumentation in Astronomy VⅡ, 1990, 1235: 151-159.
[44] Larsen M F, Sargent S D, Tansock Jr J J. On-orbit goniometric calibration for the SPIRIT Ⅲ radiometer[C]//Signal and Data Processing of Small Targets of SPIE, 1998, 3373: 32-43.
[45] Hoffman A W, Love P J, Ando K J, et al. Large infrared and visible arrays for low-background applications: an overview of current developments at Raytheon[C]//Optical and Infrared Detectors for Astronomy, 2004, 5499: 240-249.
[46] Mainzer A K, Hogue H, Stapelbroek M, et al. Characterization of a megapixel mid-infrared array for high background applications[C]//High Energy, Optical, and Infrared Detectors for Astronomy Ⅲ, 2008, 7021: 70210T.
[47] Hogue H H, Mattson R B, Stapelbroek M G, et al. Focal plane detectors for the WISE 12-and 23-µm bands[C]//Infrared Systems and Photoelectronic Technology Ⅱ of SPIE, 2007, 6660: 194-202.
[48] Mainzer A K, Hong J, Stapelbroek M G, et al. A new large-well 1024×1024 Si: As detector for the mid-infrared[C]//Infrared and Photoelectronic Imagers and Detector Devices, 2005, 5881: 58810Y.
[49] McMurray Jr R E, Johnson R R, McCreight C R, et al. Si: As IBC array performance for SIRTF/IRAC[C]//Infrared Spaceborne Remote Sensing Ⅷ of SPIE, 2000, 4131: 62-69.
[50] Ando K J, Hoffman A W, Love P J, et al. Development of Si: As impurity band conduction (IBC) detectors for mid-infrared applications[C]//Infrared Technology and Applications XXIX, 2003, 5074: 648-657.
[51] Starr B, Mears L, Fulk C, et al. RVS large format arrays for astronomy[C]//High Energy, Optical, and Infrared Detectors for Astronomy Ⅶ of SPIE, 2016, 9915: 929-942.
[52] Miyata T, Sako S, Nakamura T, et al. Development of a new mid-infrared instrument for the TAO 6.5-m Telescope[C]//Ground-based and Airborne Instrumentation for Astronomy Ⅲ, 2010, 7735: 77353P.
[53] Stacey G J, Hayward T L, Latvakoski H M, et al. KWIC: a widefield mid-infrared array camera/spectrometer for the KAO[C]//Infrared Detectors and Instrumentation, 1993, 1946: 238-248.
[54] Van Cleve J E, Herter T L, Butturini R, et al. Evaluation of Si: As and Si: Sb blocked-impurity-band detectors for SIRTF and WIRE[C]//Infrared Spaceborne Remote Sensing Ⅲ of SPIE, 1995, 2553: 502-513.
[55] Dotson J L, McKelvey M, McMurray Jr R, et al. Cryogenic testing of a 1024×1024 Si: As array for WISE[C]//Focal Plane Arrays for Space Telescopes Ⅲ, 2007, 6690: 66900F.
[56] WANG C, LI N, DAI N, et al. High performance infrared detectors compatible with CMOS-circuit process[J]. Chinese Physics B, 2021, 30(5): 050702. DOI: 10.1088/1674-1056/abd6fb
[57] ZHU H, ZHU J, HU W, et al. Temperature-sensitive mechanism for silicon blocked-impurity-band photodetectors[J]. Applied Physics Letters, 2021, 119(19): 191104. DOI: 10.1063/5.0065468
[58] ZHU H, ZHU J, XU H, et al. Design and fabrication of plasmonic tuned THz detectors by periodic hole structures[J]. Infrared Physics & Technology, 2019, 99: 45-48.
[59] DENG K, ZHANG K, LI Q, et al. High-operating temperature far-infrared Si: Ga blocked-impurity-band detectors[J]. Applied Physics Letters, 2022, 120(21): 211103. DOI: 10.1063/5.0092774
[60] CHEN Y, TONG W, WANG B, et al. The absorption enhancement effect of metal gratings integrated Silicon-based Blocked-Impurity-Band (BIB) terahertz detectors[C]//2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) of IEEE, 2021: 43-44.
[61] XIAO Y, ZHU H, DENG K, et al. Progress and challenges in blocked impurity band infrared detectors for space-based astronomy[J]. Science China Physics, Mechanics & Astronomy, 2022, 65(8): 1-17.
[62] Herter T L, Hayward T L, Houck J R, et al. Mid-and far-infrared hybrid focal plane arrays for astronomy[C]//Infrared Astronomical Instrumentation of SPIE, 1998, 3354: 109-115.
[63] Stapelbroek M G, Hogue H H, Atkins E W, et al. Silicon for visible-to-VLWIR photon detection[C]//Infrared Technology and Applications XXIX, 2003, 5074: 166-172.
[64] Bamberg J A, Zaun N H. Design and performance of the cryogenic focal plane optics assembly for the Infrared Astronomical Satellite (IRAS)[C]//Cryogenic Optical Systems and Instruments Ⅰ of SPIE, 1985, 509: 94-102.
[65] Werner M W, Roellig T L, Low F J, et al. The Spitzer space telescope mission[J]. The Astrophysical Journal Supplement Series, 2004, 154(1): 1. DOI: 10.1086/422992
[66] Mainzer A K, Eisenhardt P, Wright E L, et al. Preliminary design of the wide-field infrared survey explorer (WISE)[C]//UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts Ⅱ Of SPIE, 2005, 5899: 262-273.
[67] Gardner, J.P., Mather, J.C., Clampin, M., et al. The James Webb Space telescope[J]. Space Science Reviews, 2006, 123(4): 485-606. DOI: 10.1007/s11214-006-8315-7
[68] Huffman J E. Infrared detectors for 2-to 220-um astronomy[C]//Infrared Detectors: State of the Art Ⅱ, 1994, 2274: 157-169.
[69] Herter T, Stacey G, Gull G, et al. FORCAST: a WIDE-field infrared camera for SOFIA[C]//American Astronomical Society Meeting Abstracts, 1997, 191: 09.02.
[70] Mather J C, Cheng E S, Eplee Jr R E, et al. A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite[J]. The Astrophysical Journal, 1990, 354: L37-L40. DOI: 10.1086/185717
[71] Rauter P, Fromherz T, Winnerl S, et al. Terahertz Si: B blocked-impurity-band detectors defined by nonepitaxial methods[J]. Applied Physics Letters, 2008, 93(26): 261104. DOI: 10.1063/1.3059559
[72] Mary W. Jackson NASA Headquarters. NASA Missions[DB/OL]. https://www.nasa.gov/missions.
-
期刊类型引用(8)
1. 李明超,闫宽,张聪,胡记伟,欧锴,陈绪兵. 用于激光软钎焊温度测量的高精度红外辐射测温装置. 红外技术. 2025(01): 108-114 . 本站查看
2. 秦沛强,聂传杰,吝曼卿,卢永雄,张岸勤,何家冰. 磷矿巷道岩爆风险的可视化及特征增强研究. 矿业研究与开发. 2025(02): 123-131 . 百度学术
3. 李贞,魏勇. 基于BP神经网络的红外测温补偿算法研究. 机械制造与自动化. 2023(01): 170-172+176 . 百度学术
4. 曾飞,胡文祥,高彦鑫,宋杰杰. 基于激光扫描的输送带横向跑偏检测系统. 制造业自动化. 2023(05): 21-24 . 百度学术
5. 杨帆,徐军,吴振生,孙明晓,金添. 基于Web端多节点红外热成像传感系统设计. 激光杂志. 2022(02): 154-157 . 百度学术
6. 何翔. 非接触式检测装置综合实验设计. 电子技术与软件工程. 2022(07): 148-151 . 百度学术
7. 谢彬棽. 基于双CAN总线的露天矿带式输送机速度自动化控制方法. 煤矿机械. 2022(12): 214-217 . 百度学术
8. 武存喜. 回转窑焚烧设备退火温度模糊自适应控制技术. 工业加热. 2022(12): 27-31 . 百度学术
其他类型引用(2)