Research Progress of Silicon-based BIB Infrared Detector
-
摘要: 以锗基和硅基为主的阻挡杂质带(blocked impurity band,BIB)红外探测器的兴起有力推进了红外天文学的快速发展,其中硅基BIB红外探测器在特定波长的航天航空领域有着不可替代的地位。国外对硅基BIB红外探测器的研究已有40多年,以美国航空航天局(NASA)为主的科研机构已经实现了硅基BIB红外探测器在天文领域的诸多应用,而国内对硅基BIB红外探测器的研究尚处于起步阶段。本文首先阐述了硅基BIB红外探测器的工作原理,然后简单概述了器件结构和制备工艺,并对不同类型的硅基BIB探测器的性能进行了对比分析,之后介绍了其在天文探测中的应用,最后对硅基BIB红外探测器未来的发展进行了展望。Abstract: The rise of blocked impurity band (BIB) infrared detectors based on germanium and silicon has promoted the rapid development of infrared astronomy, among which silicon-based BIB infrared detectors with specific wavelengths play an irreplaceable role in the aerospace field. Research on silicon-based BIB infrared detectors has been conducted abroad for more than 40 years, and many of its applications in the astronomical field have been realized by NASA and its related research institutes. However, domestic research on silicon-based BIB infrared detectors is still in its infancy. In this paper, the working principle of silicon BIB infrared detectors is described first; then, the structure and fabrication process of the device are briefly summarized, the performance of different types of silicon BIB detectors is compared and analyzed, and its application in astronomical detection is described. Finally, the future development of silicon BIB infrared detectors is discussed.
-
Keywords:
- silicon-based BIB /
- infrared detector /
- astronomical detection
-
0. 引言
线路绝缘子主要承担着连接导体和电气绝缘的功能,是整个电力系统的重要的组成部分[1-3]。由于绝缘子在生产过程中会造成一定的缺陷,以及受到自然环境的影响,绝缘子会自然劣化,绝缘性能不断减弱,绝缘子串的闪络概率将增大,最终造成电网运行的不稳定,而电力事故发生的概率也将增大,给生产生活带来不利的影响。因此绝缘子的定期检测与及时维修对于维护保障电网的安全至关重要[4-5]。
目前主流的低零值(根据DL/T596-1996《电力设备预防性试验规程》中的要求,每片悬式绝缘子的绝缘电阻不应低于300 MΩ,500 kV悬式绝缘子不低于500 MΩ。低于上述水平的,一般就认为是低值或零值绝缘子。)绝缘子检测方法有:光谱法、紫外脉冲法、径向温度法、超声波检测法等。但分析文献,发现不少方法存在危险性高、算法复杂等问题,均需进一步深入研究。由于低零值绝缘子在线路中温度变化明显,目前许多电力公司逐步采用红外成像技术对低零值绝缘子进行检测。然而目前图像处理技术对电力设备进行在线检测的研究面临着图像特征提取的困难,现有算法无法有效解决绝缘子状态检测的多分类问题,且面临处理海量数据检测耗时,检测正确率低的问题。因此,面向大数据的低零值绝缘子检测方法是今后研究的重点。
随着神经网络算法的不断改进,以深度学习为代表的人工智能理论与应用研究越来越多的被应用到故障检测识别中。目前BP(back propagation)神经网络、遗传算法[6]、Petri网络及决策树等不少数据挖掘的方法被成功应用到劣化绝缘子的诊断识别中。支持向量机同样被应用在电力系统的故障诊断领域,然而,直接采用支持向量机模型对绝缘子样本进行检测效果不尽理想。如何优化原有的支持向量机模型,解决大数据环境下绝缘子检测问题,是当下需要着重研究的方向。目前网格搜索法[7]、布谷鸟搜索算法[8]、粒子群算法[9]等等都成功被应用到优化向量机的参数寻优中。灰狼算法与支持向量机相结合应用在诸多领域中,如医学信号识别、植物种类识别、医学图像识别,其实验结果都有所改善,但很少被应用到电气设备故障诊断。本文提出的灰狼优化算法与支持向量机结合针对低零值绝缘子检测识别的应用尚属空白。
本文通过对绝缘子红外图像进行处理,对绝缘子红外图像样本进行多层次深度特征提取用于支持向量机分类识别,并采用灰狼算法实现对支持向量机参数的优化,实现对低零值绝缘子检测识别。
1. 绝缘子串红外图像预处理
1.1 信号绝缘子串红外图像增强
灰度变换增强可以增强红外图像中的目标与背景的对比度,提高图像的质量。灰度变换作为一种应用广泛的图像增强技术可使图像清晰、特征明显[10-12]。
设原图像为f(x, y),其灰度范围为[a, b];变换后的图像g(x, y),其灰度范围线性的扩展至[c, d]。
$$g\left( {x, y} \right) = \frac{{d - c}}{{b - a}}\left[ {f\left( {x, y} \right) - a} \right] + c$$ (1) 图像中大部分灰度级分布在区间[a, b]内,有少许部分在此区间之外,为了改善增强效果,可以令:
$$g\left( {x, y} \right) = \left\{ \begin{array}{l} c \\ \frac{{d - c}}{{b - a}}\left[ {f\left( {x, y} \right) - a} \right] + c \\ d \\ \end{array} \right.$$ (2) 直方图均衡化作为一种应用广泛的图像增强方法,可使绝缘子串同背景对比度增大,方便后期提取绝缘子串。
如图 1所示,直方图均衡化增大了绝缘子串与背景的灰度级,图像的对比度也增强了,这样有利于后期正确分割出绝缘子串和背景。
1.2 基于Ostu算法的图像自适应阈值分割
首先利用最大类间方差法(Ostu)对增强后的绝缘子红外图像进行分割[13],如图 2所示。该方法可自动选取阈值,分割效果好、速度快。
1.3 绝缘子分割
对Ostu分割得到的二值图像进行切割,提取图像中完整的绝缘子串,如图 3所示,为绝缘子缺陷检测智能认知工作做好准备。
1.4 基于Randon变换的图像倾斜校正
运用Ostu算法将绝缘子串的候选区域分割提取后,用Randon变换[14]的图像倾斜校正算法进行绝缘子角度校正,如图 4所示。
2. 灰狼算法支持向量机模型
2.1 支持向量机模型
支持向量机(support vector machine, SVM)是Bell实验室以V. Vapnik教授为首的研究小组针对小样本机器学习方法提出的一种新型模式识别方法[15]。
对于线性不可分的特征向量,需采用核函数将向量投放到高维空间中达到可以分类的效果。高斯径向基核函数作为应用最广泛的核函数,在缺乏样本数据的先验知识时,可通过调整参数取得较好的学习效果。本文采用高斯径向基核函数:
$$K\left( {{x_i}, {x_j}} \right) = {\rm{exp}}\left( { - \frac{{\left\| {{x_i} - {x_j}} \right\|}}{{2{\delta ^2}}}} \right)$$ (3) 式中:δ>0为高斯核的带宽。
设h维的空间上,针对线性可分问题,所有样本均满足约束件:
$${y_i}\left( {{\mathit{\boldsymbol{\omega }}^{\rm{T}}}{X_i} + {\omega _0}} \right) - 1≥0, i = 1, 2, {\rm{L}} $$ (4) 求解支持向量机可转化为分类间隔问题:
$$\mathop {{\rm{min}}}\limits_{\omega , b} \frac{1}{2}{\left\| \mathit{\boldsymbol{\omega }} \right\|^2}$$ (5) 在实际机器学习时,为了允许机器出现一些错分的点,通常在约束条件中加入松弛变量ζ>0,增加一个常数C作为惩罚因子:
$$\mathop {{\rm{min}}}\limits_{\omega , b, \zeta } \left( {\frac{1}{2}{{\left\| \mathit{\boldsymbol{\omega }} \right\|}^2} + C\sum\limits_{i = 1}^h {{\zeta _i}} } \right)$$ (6) 以上问题的求解,可以得到SVM回归表达式:
$$y\left( x \right) = {\rm{sgn}}\left( {\sum\limits_{j = 1}^h {{\alpha _j}{y_j}K\left( {{x_j}, x} \right) - b} } \right)$$ (7) 式中:αj为拉格朗日乘积因子。
2.2 灰狼优化算法
灰狼优化算法(grey wolf optimizer,GWO),是一种通过模拟灰狼捕猎过程中的狩猎和搜索行为建立的全局随机搜索算法。由澳大利亚学者Seyedali. Mirjalili等人在2014年提出的新型算法[16]。GWO算法与粒子群优化算法(particle swarm optimization,PSO)类似,是一个从随机解出最优解的过程。该方法相较于PSO、网格搜索算法(GS)等算法参数少,结构简单,同时又有较强的收敛性,已成功应用于图像处理等领域中。
将最优解设为α,第二个和第三个最佳解分别命名为β和δ,而其余的解均设为ω。狼群通过3只个体狼α、β和δ为初始解带领狼群ω在空间中向猎物(最优解)逼近,经过图 5所示的狼群移动方式,不断迭代,引导狼群不断靠近全局最优解。搜索过程狼群捕食位置更新:
$$D = \left| {C \cdot {X_{\rm{p}}}\left( t \right) - X\left( t \right)} \right|$$ (8) $$X\left( {t + 1} \right) = {X_{\rm{p}}}\left( t \right) - A \cdot D$$ (9) 式中:D为当前灰狼距猎物距离;A和C为系数向量;Xp是猎物的位置向量。
$$A = 2 \cdot a \cdot {r_1} - a$$ (10) $$C = 2 \cdot {r_2}$$ (11) 式中:a随迭代次数从2~0递减;r1,r2是[0, 1]内的随机向量。
为了模拟狩猎行为,假设α,β和δ对猎物的潜在位置有更好的了解,在每次迭代过程中,保留当前最优的α,β和δ解。
$$\left\{ \begin{array}{l} {D_\alpha } = \left| {{C_1} \cdot {X_\alpha }\left( t \right) - X\left( t \right)} \right| \\ {D_\beta } = \left| {{C_2} \cdot {X_\beta }\left( t \right) - X\left( t \right)} \right| \\ {D_\delta } = \left| {{C_3} \cdot {X_\delta }\left( t \right) - X\left( t \right)} \right| \\ \end{array} \right.$$ (12) $$\left\{ \begin{array}{l} {X_1} = {X_\alpha } - {A_1} \cdot {D_\alpha } \\ {X_2} = {X_\beta } - {A_2} \cdot {D_\beta } \\ {X_3} = {X_\delta } - {A_3} \cdot {D_\delta } \\ \end{array} \right.$$ (13) $${X_{\rm{p}}}\left( {t + 1} \right) = \frac{{{X_1} + {X_2} + {X_3}}}{3}$$ (14) 式中:Xα,Xβ和Xδ分别代表α狼,β狼和δ狼当前位置;Dα,Dβ和Dδ分别代表当前狼位置和3只头狼的位置间的距离;A1,A2和A3为随机系数向量;t表示迭代次数。
2.3 GWO-SVM
采用GWO优化算法对绝缘子红外图谱识别的SVM网络核参数惩罚因子C与核宽度δ进行参数优化,以达到图谱分类识别的准确性和泛化能力。
① 输入绝缘子图谱的特征量,选取部分作为SVM的训练集,并将剩余的特征向量集作为测试集,以验证SVM识别的准确率。
② 初始化狼群数量、迭代次数,设置惩罚因子C与核宽度δ的范围。
③ SVM根据初始参数C与δ进行训练和测试,并以错误率最小化为目标。
④ GWO以C与δ为猎物进行优化,达到最大迭代次数时输出GWO全局最优值。
⑤ 将处理后的绝缘子图谱样本分别作为SVM的训练集与测试集。采用最佳参数C与δ建立识别模型,并对测试样本进行预测、分析。
3. 实验结果与分析
3.1 数据描述
为了验证所提出的基于GWO-SVM劣化绝缘子状态检测的可行性,由于目前未建立绝缘子红外图像数据库,我们选取200幅绝缘子图像作为绝缘子样本库。采取随机抽样的方法选取两类样本,其中训练样本120幅,测试样本80幅。所有样本由多位人工分拣专家投票分为完好和低零值两类(如图 6所示)。
3.2 绝缘子检测结果
本文利用灰狼优化算法、粒子群优化算法(random-search)和网格搜索算法(grid-search)对支持向量机参数进行优化。我们对比了3种算法的寻优时间、寻参效率和训练准确率。如表 1所示,灰狼优化算法的各项性能都要比另外两种算法好,其准确率及寻参效率都高于其余两种优化算法。
表 1 参数寻优方法对比Table 1. Comparison of parameter optimization methodsParameter optimization method Accuracy/% Optimization time/s Seeking efficiency/(s/time) Grid-search 91.523 12.693 0.2487 Random-search 92.267 8.159 0.3156 Grey wolf optimizer 95.246 6.251 0.1145 从3种算法优化支持向量机的结果看,网格搜索耗时长且识别准确率低,且寻优时存在复杂度高,运算量大等不足。粒子群优化算法收敛速度快,算法简单,但也存在很明显的缺点,它对于有多个局部极值点的函数,容易陷入到局部极值点中,得不到正确的结果,因此其优化向量机识别的正确率不高。而灰狼优化算法识别准确率可达到95.246%,寻优时间最少且寻参效率高。灰狼算法充分利用先验知识,避免由于惩罚参数过大而导致算法陷入局部最优的风险。因此灰狼优化相比于粒子群搜索算法和网格搜索算法能高效的对低零值绝缘子进行识别。图 7为SVM参数寻优过程。
本文通过网格优化、粒子群优化和灰狼优化这3种优化算法对支持向量机的参数C和δ进行优化。图 8为不同优化算法的故障识别对比。
通过图 8不同优化算法的识别对比,可以看出GWO-SVM诊断方式相比于GS-SVM和PSO-SVM识别正确率更高。对于图 8分类的结果,结合表 1,GWO-SVM错误识别的绝缘子仅有一个,且GWO寻优时间及寻参效率明显优于GS与PSO,满足预设要求。整个绝缘子串检测系统可以实现有效地对低零值绝缘子进行故障诊断,具有工程实际意义。
4. 结束语
1)本文绝缘子红外图像样本进行了多层次深度特征提取,相比于现有的深度模型提取的特征具有更强的鉴别能力。
2)本文提出红外图像和灰狼算法优化支持向量机相结合的方法实现对低零值绝缘子的检测识别,能够在大数据层面准确地识别低零值绝缘子,减少人力,物力以及财力。
3)本文采用灰狼算法优化支持向量机参数,并采用高斯径向基核函数,得到的识别模型识别效果好。
-
图 2 硅基BIB红外探测器的结构和工作原理:(a) 非本征硅光电导探测器的工作原理示意图[10];(b) 硅基BIB红外探测器的工作原理图[11];(c) Si: As BIB红外探测器结构示意图[13];(d) Si: Sb BIB红外探测器的器件结构图[14];(e) 背照射式Si: Sb BIB探测器的结构示意图,其中Nd为中性施主的密度,Nd+为电离施主的浓度,Na-为电离受主的浓度[15];(f) Si: Sb BIB探测器的红外吸收层在正的反偏电压下的平衡电荷分布图[15]
Figure 2. Structures and working mechanisms of silicon-based BIB infrared detectors: (a) Schematic diagram of the working principle of the ESPC detector[10]; (b) Schematic diagram of the working principle of the silicon-based BIB infrared detector[11]; (c) Structure diagram of the Si: As BIB infrared detector[13]; (d) Structure diagram of the Si: Sb BIB infrared detector[14]; (e) Schematic diagram of the back-illuminated Si: Sb BIB, where Nd is the density of neutral donors, Nd+ is the ionized donor density, and Na- is the density of ionized acceptors[15]; (f) Equilibrium charge distributions for the positive reverse-biased operation for the Si: Sb BIB infrared detector[15]
图 3 硅基BIB红外探测器的性能:(a) 用于Si: As IBC探测器辐射测试的低温杜瓦装置[38];(b) 测试及计算得到的Si: As IBC探测器的响应量子效率曲线[38];(c) Si: As IBC探测器的I-V测试曲线[38];(d) 金属管壳封装的Si: Sb BIB探测器[14];(e) Si: Sb BIB探测器的光谱量子效率曲线[14];(f) Si: Sb BIB探测器的暗电流与温度的关系[14];(g) Si: P BIB器件的PC光谱与远红外背景光谱,以及响应峰的指定[39];(h) Si: Ga BIB探测器的光谱量子效率[40];(i) Si: Ga BIB探测器与长波碲镉汞探测器的暗电流对比[40]
Figure 3. Performances of the silicon-based BIB infrared detectors: (a) Dewar configuration for Si: As IBC detector radiation testing[38]; (b) Responsive quantum efficiency curves of Si: As IBC detector[38]; (c) I-V testing curves of Si: As IBC detector[38]; (d) Metal shell packed Si: Sb BIB detector[14]; (e) Spectral quantum efficiency curve of Si: Sb BIB detector[14]; (f) Dark current as a function of temperature of Si: Sb BIB detector, measured at 1.5 V bias voltage[14]; (g) PC spectrum of the Si: P BIB device versus far-infrared background spectrum, and the designations of the response peak[39]; (h) Spectral QE of Si: Ga BIB detector[40]; (i) Dark current performance comparison of Si: Ga BIB detector with LWMCT detector[40]
图 5 国外硅基BIB红外探测器的研究进展:(a) 空间红外望远镜设备(SIRTF)上的128×128长波长红外焦平面组件[29];(b) DRS公司的HF1024焦平面阵列,封装在84针无铅芯片载体上[40];(c) 百万像素中红外阵列裸多路复用器[54];(d) 无掺杂单晶衬底晶圆[54];(e) Si: As BIB焦平面阵列的封装[55];(f) 256×256 Si: As IBC阵列及其航天封装[57];(g) 1024×1024 Si: As IBC阵列的红外传感器芯片[53];(h) 1024×1024 Si: As IBC阵列的读出电路[58];(i) 由双侧可粘扣的HF1024 Si: As和Si: Sb焦平面阵列组成的2048×2048焦平面阵列,像元间距为18 μm[40]
Figure 5. Research progresses of overseas silicon-based BIB infrared detectors: (a) SIRTF 128×128 long wavelength infrared focal plane array assembly[29]; (b) DRS HF1024 FPA packaged in 84-pin leadless chip carrier[40]; (c) A Mega pixel MIR bare multiplexer[54]; (d) Undoped single-crystal substrate wafer[54]; (e) Packaging of the BIB focal plane arrays[55]; (f) 256×256 Si: As IBC array in flight mount[57]; (g) Photo of a 1024×1024 Si: As IBC SCA[53]; (h) SB-291 ROIC for 1024×1024 Si: As IBC array[58]; (i) 2048×2048 FPA with 18-micron pixel pitch composed of 2-side buttable HF1024 Si: As and Si: Sb FPAs[40]
图 6 国内硅基BIB红外探测器的研究进展:(a) 平面型Si: P BIB探测器结构示意图[65];(b) 垂直型Si: P BIB探测器模型[58];(c) Si: P BIB探测器在2 V偏压和不同温度下的响应光谱[58];(d) 等离子体调谐太赫兹探测器横截面示意图[59];(e) 不同周期性孔结构(PHSs)的Si: P BIB探测器的归一化光电流谱[59];(f) Si: Ga BIB探测器在不同功能区上的层状材料结构示意图[60];(g) Si: Ga BIB探测器不同温度下的响应谱[60];(h) 金属光栅/硅基BIB太赫兹探测器的工作原理图[61];(i) 有金属光栅的器件(参数:p=7 μm,d=5 μm,DR=2/7)与无金属光栅的器件的实验光谱响应对比[61]
Figure 6. Research progresses of domestic silicon-based BIB infrared detectors: (a) Schematic diagram of the planar type Si: P BIB detector structure[65]; (b) Vertical type Si: P BIB detector model[58]; (c) Response spectrum of the Si: P BIB detector at 2 V bias voltage with different temperatures[58]; (d) Schematic representation of the cross section of the plasma-tuning THz detector[59]; (e) The normalized photocurrent spectrum of the Si: P BIB detectors for different periodic pore structures (PHSs)[59]; (f) Schematic diagram of the layered material structure of the Si: Ga BIB detector in different functional areas[60]; (g) Response spectrum of the Si: Ga BIB detector at different temperatures[60]; (h) Mechanism of the metal-grating/silicon-based BIB THz detector[61]; (i) Comparison of the experimental spectral response of devices with metal gratings (parameters: p=7 μm, d=5 μm, DR=2/7) with devices with metal-free gratings[61]
图 7 硅基BIB红外探测器的天文应用[72]:(a) 斯皮策太空望远镜;(b) 斯皮策太空望远镜观测到的“红蝴蝶”星系;(c) WISE捕捉的最古老的超新星RCW 86的图像;(d) 水瓶座/SAC-D航天探测器;(e) 平流层天文台;(f)平流层天文台捕捉的恒星合并的快照;(g) 詹姆斯·韦伯空间望远镜(JWST);(h) JWST的近红外照相机捕捉的第一张全彩图像;(i) COBE在太空中运行的示意图
Figure 7. Astronomical applications of the silicon-based BIB infrared detectors[72]: The spitzer space telescope; (b) The "red butterfly" galaxy was observed by the spitzer space telescope; (c) An image of the oldest supernova RCW 86 captured by WISE; (d) The aquarius/SAC-D space probe; (e) Stratospheric observatory for infrared astronomy; (f) Snapshot of stellar mergers captured by SOFIA; (g) The James Webb Space Telescope; (h)The first full color image captured by the near-infrared camera of the JWST; (i) Schematic representation of the cosmic background explorer operating in space
表 1 硅基BIB红外探测器的部分工艺参数
Table 1 Partial process parameters of the silicon-based BIB infrared detector
Year Material Thickness of IRAL/μm Thickness of blocking layer/μm Doping concentration of IRAL/cm-3 Fabrication method of epitaxial layer Institution Ref. 1979 Si: As 6−10 1−4 7×1017 CVD Rockwell [11] 1992 Si: Sb 17 3.5 1−8×1017 CVD Rockwell [15] 1999 Si: B 4.5 3 1×1018 - - [16] 2007 Si: As 10 - 4×1018 - DRS [17] 2007 Si: P - - 4×1018 - DRS [17] 2018 Si: As 15 - 1×1018 - NIST [18] 表 2 国外公司生产的硅基BIB红外探测器的性能参数
Table 2 Performance parameters of silicon-based BIB infrared detectors produced by foreign companies
Year Material Technology FPA format Pixel size/μm2 Pixel pitch/μm Operating temperature range/K Wavelength
range/μmDark current Quantum efficiency/% Institution Applications Ref. 2012 Si: Sb BIB 1024×1024 18 - 5-12 14-38 0.1 e/s 60 DRS Wide-field infrared survey explorer [14] 1992 Si: Sb BIB 128×128 - - 7 2-40 - - Rockwell Space infrared telescope facility [15] 2018 Si: As BIB - - - 7-10 2-30 10-12 A/mm2 60 NIST Missile defense transfer radiometer [18] 1986 Si: As BIB 10×50 - - 12 - 12.3 pA - Rockwell - [19] 1991 Si: As BIB 128×128 75 - 11 - < 0.1 nA - Rockwell Space infrared telescope facility [20] 1993 Si: As BIB 256×256 30 - 12 - 18 e-/s 57 HTC Space infrared telescope facility [21] 1995 Si: Ga ESPC 128×192 75 - ≤10 5-17 0 30 LETI/LIR European transonic windtunnel [22] 1998 Si: As BIB 256×256 30 - 6-7 - < 100 e-/s 40 RVS Infrared imaging surveyor [23] 1998 Si: As BIB 320×240 - 50 6 2-28 100 e-/s 40-55 SBRC SUBARU [24] 2000 Si: As BIB 256×256 - 25 6 5-28 3.8 e-/s 84 RVS Space infrared telescope facility [25] 2001 Si: As BIB 320×240 - 50 6-12 2-28 ≤100 e-/s > 40 RVS Mid-infrared spectrometer and imager [26] 2001 Si: As BIB 1024×1024 - 27 6-8 5-30 0.3 e-/s 45 RVS Next generation space telescope [27] 2001 Si: As BIB 1024×1024 - 27 6 5-30 < 1 e-/s 50 RVS Stratospheric observatory for infrared astronomy [28] 2003 Si: As BIB 128×128 - 75 - - 0.49-2.9 e-/s 84 DRS Wide-field infrared explorer [29] 2003 Si: Sb BIB 128×128 - 75 - - 5.3-12.9 e-/s 51 DRS Wide-field infrared explorer [29] 2003 Si: As BIB 256×256 50 - 4.7 5-25 - 56 DRS Stratospheric observatory for infrared astronomy [30] 2004 Si: As BIB 256×256 25 - 6.7-7.1 5-28 0.1 e-/s > 50 RVS James Webb space telescope [31] 2005 Si: As BIB 1024×1024 - 18 6 5-28 < 10 e-/s > 57 DRS Wide-field infrared survey explorer/James Webb space telescope [32] 2006 Si: As BIB 1024×1024 - 18 7.8 7.5-28 < 100 e-/s > 60 DRS Wide-field infrared survey explorer [33] 2008 Si: As BIB 1024×1024 30 - 7-9 3-28 1 e-/s > 40 RVS AQUARIUS [34] -
[1] McCreight C R, McKelvey M E, Goebel J H, et al. Detector arrays for low-background space infrared astronomy[C]//Infrared detectors, Sensors, and Focal Plane Arrays of SPIE, 1986, 686: 66-75.
[2] Szmulowicz F, Madarasz F L. Blocked impurity band detectors—an analytical model: figures of merit[J]. Journal of Applied Physics, 1987, 62(6): 2533-2540. DOI: 10.1063/1.339466
[3] Battersby C, Armus L, Bergin E, et al. The origins space telescope[J]. Nature Astronomy, 2018, 2(8): 596-599. DOI: 10.1038/s41550-018-0540-y
[4] 刘恩科, 朱秉升, 罗晋生. 半导体物理学: 7版[M]. 北京: 电子工业出版社, 2017. LIU Enke, ZHU Bingsheng, LUO Jingsheng. The Physics of Semiconductors: 7th Edition[M]. Beijing: Publishing House of Electronics Industry, 2017.
[5] CHEN H C, LIN C C, HAN H W, et al. Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers[J]. Optics Express, 2011, 19(105): A1141-A1147.
[6] JUANG J Y, ZHOU K, BANG J H, et al. Improved photovoltaic performance of Si nanowire solar cells integrated with ZnSe quantum dots[J]. The Journal of Physical Chemistry C, 2012, 116(23): 12409-12414. DOI: 10.1021/jp301683q
[7] WU C, Crouch C H, ZHAO L, et al. Near-unity below-band-gap absorption by microstructured silicon[J]. Applied Physics Letters, 2001, 78(13): 1850-1852. DOI: 10.1063/1.1358846
[8] Crouch C, Carey J, Shen M, et al. Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation[J]. Appl Phys A, 2004, 79: 1635-1641. DOI: 10.1007/s00339-004-2676-0
[9] ZHANG T, Ahmad W, LIU B, et al. Broadband infrared response of sulfur hyperdoped silicon under femtosecond laser irradiation[J]. Materials Letters, 2017, 196: 16-19. DOI: 10.1016/j.matlet.2017.03.011
[10] 王占国, 郑有炓. 半导体材料研究进展[M]. 北京: 高等教育出版社, 2012. WANG Zhanguo, ZHENG Youliao. Research Progress in Semiconductor Materials[M]. Beijing: Publishing House of Higher Education, 2018.
[11] Petroff M D, Stapelbroek M G. Blocked Impurity Band Detectors: 4568 960[P]. U.S. Patent, 1986-02-04.
[12] Petroff M D, Stapelbroek M G. Responsivity and noise models of blocked impurity band detectors[C]//Proc. IRIS Specialty Group on Infrared Detectors, 1984, 2.
[13] Rieke G H. Infrared detector arrays for astronomy[J]. Annu. Rev. Astron. Astrophys. , 2007, 45: 77-115. DOI: 10.1146/annurev.astro.44.051905.092436
[14] Khalap V, Hogue H. Antimony-doped silicon blocked impurity band (BIB) arrays for low flux applications[C]//Infrared Sensors, Devices, and Applications Ⅱ. International Society for Optics and Photonics, 2012, 8512: 85120O.
[15] Huffman J E, Crouse A G, Halleck B L, et al. Si: Sb blocked impurity band detectors for infrared astronomy[J]. Journal of Applied Physics, 1992, 72(1): 273-275. DOI: 10.1063/1.352127
[16] Asadauskas L, Brazis R, Leotin J. Optical phonon line in boron-doped silicon BIB structures[C]//Materials Science Forum. Trans Tech Publications Ltd., 1999, 297: 361-364.
[17] Hogue H H, Guptill M T, Monson J C, et al. Far-infrared blocked impurity band detector development[C]//Infrared Spaceborne Remote Sensing and Instrumentation XV of SPIE, 2007, 6678: 63-73.
[18] Woods S I, Proctor J E, Jung T M, et al. Wideband infrared trap detector based upon doped silicon photocurrent devices[J]. Applied Optics, 2018, 57(18): D82-D89. DOI: 10.1364/AO.57.000D82
[19] Stetson S B, Reynolds D B, Stapelbroek M G, et al. Design and performance of blocked-impurity-band detector focal plane arrays[C]//Infrared Detectors, Sensors, and Focal Plane Arrays of SPIE, 1986, 686: 48-65.
[20] Noel R A. Large-area blocked-impurity-band focal plane array development[C]//Infrared Detectors and Focal Plane Arrays Ⅱ of SPIE, 1992, 1685: 250-259.
[21] Lum N A, Asbrock J F, White R, et al. Low-noise, low-temperature 256 ×256 Si: As IBC staring FPA[C]//Infrared Detectors and Instrumentation of SPIE, 1993, 1946: 100-109.
[22] Suffis S, Caes M, Deliot P, et al. Characterization of 128×192 Si: Ga focal plane arrays: study of nonuniformity, stability of its correction, and application for the CRYSTAL camera[C]//Infrared Detectors and Focal Plane Arrays Ⅴ of SPIE, 1998, 3379: 235-248.
[23] Matsuhara H. IRC: an infrared camera on board the IRIS[C]//Infrared Astronomical Instrumentation of SPIE, 1998, 3354: 915-921.
[24] Sohn E, Schneider E R, Cruz-Gonzales I, et al. Mid-infrared camera/spectrograph for OAN/SPM[C]//Infrared Astronomical Instrumentation, 1998, 3354: 822-824.
[25] McMurray Jr R E, Johnson R R, McCreight C R, et al. Si: As IBC array performance for SIRTF/IRAC[C]//Infrared Spaceborne Remote Sensing Ⅷ of SPIE, 2000, 4131: 62-69.
[26] Deutsch L K, Hora J L, Adams J D, et al. MIRSI: a mid-infrared spectrometer and imager[C]//Instrument Design and Performance for Optical/Infrared Ground-based Telescopes of SPIE, 2003, 4841: 106-116.
[27] Ennico K A, McKelvey M E, McCreight C R, et al. Large format Si: As IBC array performance for NGST and future IR space telescope applications[C]//IR Space Telescopes and Instruments of SPIE, 2003, 4850: 890-901.
[28] Ennico K A, Greene T P, McCreight C R, et al. Development and testing of a 1024×1024 pixel Si: As IBC detector for SOFIA-like applications[C]//Airborne Telescope Systems Ⅱ of SPIE, 2003, 4857: 155-165.
[29] Hogue H H, Guptill M L, Reynolds D, et al. Space mid-IR detectors from DRS[C]//IR Space Telescopes and Instruments, 2003, 4850: 880-889.
[30] Adams J D, Herter T L, Keller L D, et al. Testing of mid-infrared detector arrays for FORCAST[C]//Optical and Infrared Detectors for Astronomy of SPIE, 2004, 5499: 442-451.
[31] Love P J, Hoffman A W, Lum N A, et al. 1024×1024 Si: As IBC detector arrays for JWST MIRI[C]//Focal Plane Arrays for Space Telescopes Ⅱ of SPIE, 2005, 5902: 58-66.
[32] Mainzer A K, Hong J, Stapelbroek M G, et al. A new large-well 1024×1024 Si: As detector for the mid-infrared[C]//Infrared and Photoelectronic Imagers and Detector Devices of SPIE, 2005, 5881: 253-260.
[33] Mainzer A, Larsen M, Stapelbroek M G, et al. Characterization of flight detector arrays for the wide-field infrared survey explorer[C]//High Energy, Optical, and Infrared Detectors for Astronomy Ⅲ of SPIE, 2008, 7021: 302-313.
[34] Ives D, Finger G, Jakob G, et al. AQUARIUS: the next generation mid-IR detector for ground-based astronomy[C]//High Energy, Optical, and Infrared Detectors for Astronomy Ⅴ of SPIE, 2012, 8453: 296-308.
[35] Reynolds D B, Seib D H, Stetson S B, et al. Blocked impurity band hybrid infrared focal plane arrays for astronomy[J]. IEEE Transactions on Nuclear Science, 1989, 36(1): 857-862. DOI: 10.1109/23.34565
[36] Petroff M D, Stapelbroek M G. Blocked Impurity Band Detectors, Radiation Hard, High Performance LWIR Detectors[C]//Proceedings, IRIS Specialty Group on Infrared Detectors, 1980: 48-62.
[37] Mainzer A, Larsen M, Stapelbroek M G, et al. Characterization of flight detector arrays for the wide-field infrared survey explorer[C]//High Energy, Optical, and Infrared Detectors for Astronomy Ⅲ of SPIE, 2008, 7021: 302-313.
[38] Ando K J, Hoffman A W, Love P J, et al. Development of Si: As impurity band conduction (IBC) detectors for mid-infrared applications[C]//Infrared Technology and Applications XXIX, 2003, 5074: 648-657.
[39] LIAO K, LI N, LIU X, et al. Ion-implanted Si: P blocked-impurity-band photodetectors for far-infrared and terahertz radiation detection[C]//International Symposium on Photoelectronic Detection and Imaging on Terahertz Technologies and Applications of SPIE, 2013, 8909: 257-265.
[40] Hogue H, Atkins E, Reynolds D, et al. Update on blocked impurity band detector technology from DRS[C]//Detectors and Imaging Devices: Infrared, Focal Plane, Single Photon. International Society for Optics and Photonics, 2010, 7780: 778004.
[41] Sclar N. Properties of doped silicon and germanium infrared detectors[J]. Progress in Quantum Electronics, 1984, 9(3): 149-257. DOI: 10.1016/0079-6727(84)90001-6
[42] Kleinhans W A, Petroff M D, Stapelbroek M G. Hybrid Si: As BIBIB Detector Arrays[C/OL]//Proc. of IRIS Specialty Group on Infrared Detectors, 1984: https://www.researchgate.net/profile/George-Gull/publication/234236444_Improved_SiAs_BIBIB_Back-Illuminated_Blocked-Impurity-Band_hybrid_arrays/links/0f317537a14b676810000000/Improved-SiAs-BIBIB-Back-Illuminated-Blocked-Impurity-Band-hybrid-arrays.pdf.
[43] Fowler A M, Joyce R R. Status of the NOAO evaluation of the Hughes 20x64 Si: As impurity band conduction array[C]//Instrumentation in Astronomy VⅡ, 1990, 1235: 151-159.
[44] Larsen M F, Sargent S D, Tansock Jr J J. On-orbit goniometric calibration for the SPIRIT Ⅲ radiometer[C]//Signal and Data Processing of Small Targets of SPIE, 1998, 3373: 32-43.
[45] Hoffman A W, Love P J, Ando K J, et al. Large infrared and visible arrays for low-background applications: an overview of current developments at Raytheon[C]//Optical and Infrared Detectors for Astronomy, 2004, 5499: 240-249.
[46] Mainzer A K, Hogue H, Stapelbroek M, et al. Characterization of a megapixel mid-infrared array for high background applications[C]//High Energy, Optical, and Infrared Detectors for Astronomy Ⅲ, 2008, 7021: 70210T.
[47] Hogue H H, Mattson R B, Stapelbroek M G, et al. Focal plane detectors for the WISE 12-and 23-µm bands[C]//Infrared Systems and Photoelectronic Technology Ⅱ of SPIE, 2007, 6660: 194-202.
[48] Mainzer A K, Hong J, Stapelbroek M G, et al. A new large-well 1024×1024 Si: As detector for the mid-infrared[C]//Infrared and Photoelectronic Imagers and Detector Devices, 2005, 5881: 58810Y.
[49] McMurray Jr R E, Johnson R R, McCreight C R, et al. Si: As IBC array performance for SIRTF/IRAC[C]//Infrared Spaceborne Remote Sensing Ⅷ of SPIE, 2000, 4131: 62-69.
[50] Ando K J, Hoffman A W, Love P J, et al. Development of Si: As impurity band conduction (IBC) detectors for mid-infrared applications[C]//Infrared Technology and Applications XXIX, 2003, 5074: 648-657.
[51] Starr B, Mears L, Fulk C, et al. RVS large format arrays for astronomy[C]//High Energy, Optical, and Infrared Detectors for Astronomy Ⅶ of SPIE, 2016, 9915: 929-942.
[52] Miyata T, Sako S, Nakamura T, et al. Development of a new mid-infrared instrument for the TAO 6.5-m Telescope[C]//Ground-based and Airborne Instrumentation for Astronomy Ⅲ, 2010, 7735: 77353P.
[53] Stacey G J, Hayward T L, Latvakoski H M, et al. KWIC: a widefield mid-infrared array camera/spectrometer for the KAO[C]//Infrared Detectors and Instrumentation, 1993, 1946: 238-248.
[54] Van Cleve J E, Herter T L, Butturini R, et al. Evaluation of Si: As and Si: Sb blocked-impurity-band detectors for SIRTF and WIRE[C]//Infrared Spaceborne Remote Sensing Ⅲ of SPIE, 1995, 2553: 502-513.
[55] Dotson J L, McKelvey M, McMurray Jr R, et al. Cryogenic testing of a 1024×1024 Si: As array for WISE[C]//Focal Plane Arrays for Space Telescopes Ⅲ, 2007, 6690: 66900F.
[56] WANG C, LI N, DAI N, et al. High performance infrared detectors compatible with CMOS-circuit process[J]. Chinese Physics B, 2021, 30(5): 050702. DOI: 10.1088/1674-1056/abd6fb
[57] ZHU H, ZHU J, HU W, et al. Temperature-sensitive mechanism for silicon blocked-impurity-band photodetectors[J]. Applied Physics Letters, 2021, 119(19): 191104. DOI: 10.1063/5.0065468
[58] ZHU H, ZHU J, XU H, et al. Design and fabrication of plasmonic tuned THz detectors by periodic hole structures[J]. Infrared Physics & Technology, 2019, 99: 45-48.
[59] DENG K, ZHANG K, LI Q, et al. High-operating temperature far-infrared Si: Ga blocked-impurity-band detectors[J]. Applied Physics Letters, 2022, 120(21): 211103. DOI: 10.1063/5.0092774
[60] CHEN Y, TONG W, WANG B, et al. The absorption enhancement effect of metal gratings integrated Silicon-based Blocked-Impurity-Band (BIB) terahertz detectors[C]//2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) of IEEE, 2021: 43-44.
[61] XIAO Y, ZHU H, DENG K, et al. Progress and challenges in blocked impurity band infrared detectors for space-based astronomy[J]. Science China Physics, Mechanics & Astronomy, 2022, 65(8): 1-17.
[62] Herter T L, Hayward T L, Houck J R, et al. Mid-and far-infrared hybrid focal plane arrays for astronomy[C]//Infrared Astronomical Instrumentation of SPIE, 1998, 3354: 109-115.
[63] Stapelbroek M G, Hogue H H, Atkins E W, et al. Silicon for visible-to-VLWIR photon detection[C]//Infrared Technology and Applications XXIX, 2003, 5074: 166-172.
[64] Bamberg J A, Zaun N H. Design and performance of the cryogenic focal plane optics assembly for the Infrared Astronomical Satellite (IRAS)[C]//Cryogenic Optical Systems and Instruments Ⅰ of SPIE, 1985, 509: 94-102.
[65] Werner M W, Roellig T L, Low F J, et al. The Spitzer space telescope mission[J]. The Astrophysical Journal Supplement Series, 2004, 154(1): 1. DOI: 10.1086/422992
[66] Mainzer A K, Eisenhardt P, Wright E L, et al. Preliminary design of the wide-field infrared survey explorer (WISE)[C]//UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts Ⅱ Of SPIE, 2005, 5899: 262-273.
[67] Gardner, J.P., Mather, J.C., Clampin, M., et al. The James Webb Space telescope[J]. Space Science Reviews, 2006, 123(4): 485-606. DOI: 10.1007/s11214-006-8315-7
[68] Huffman J E. Infrared detectors for 2-to 220-um astronomy[C]//Infrared Detectors: State of the Art Ⅱ, 1994, 2274: 157-169.
[69] Herter T, Stacey G, Gull G, et al. FORCAST: a WIDE-field infrared camera for SOFIA[C]//American Astronomical Society Meeting Abstracts, 1997, 191: 09.02.
[70] Mather J C, Cheng E S, Eplee Jr R E, et al. A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite[J]. The Astrophysical Journal, 1990, 354: L37-L40. DOI: 10.1086/185717
[71] Rauter P, Fromherz T, Winnerl S, et al. Terahertz Si: B blocked-impurity-band detectors defined by nonepitaxial methods[J]. Applied Physics Letters, 2008, 93(26): 261104. DOI: 10.1063/1.3059559
[72] Mary W. Jackson NASA Headquarters. NASA Missions[DB/OL]. https://www.nasa.gov/missions.
-
期刊类型引用(2)
1. 付沛,崔岚,李硕. 基于高光谱成像的光敏印油种类区分实验. 中国无机分析化学. 2024(06): 836-841 . 百度学术
2. 李硕,崔岚,付沛. 基于高光谱成像结合分光光度技术的喷墨打印墨水种类鉴别方法. 中国无机分析化学. 2024(06): 826-835 . 百度学术
其他类型引用(0)