Infrared Image Fault Recognition Method for Disconnector Based on HOG Features
-
摘要:
为了实现对于隔离开关红外图像的故障识别,本文利用改进SLIC算法,在颜色空间转换的基础上,对隔离开关的故障区域进行分割和标记,并有效提高图像分割精度。在HOG特征提取的基础上利用支持向量机算法,对隔离开关的红外图像进行设备和分类,区分其是否工作在正常状态,对于正常状态下的隔离开关,利用相对温差法,实现其故障状态的判断,相对温差越大,则故障越严重。通过实验证明,在优化的HOG特征参数情况下,可以实现图像设备的准确率最高,利用红外图像的故障诊断,可以对隔离开关的故障缺陷程度加以判断,并提供检修建议,本文模型具有很好的准确性和可靠性。
Abstract:To realize the fault recognition of an infrared image of a disconnector, this study uses an improved SLIC algorithm to segment and mark the fault area of the disconnector based on color space conversion. As a result, image segmentation accuracy was significantly improved. Based on HOG feature extraction, the support vector machine algorithm is used to classify an infrared image of a disconnector and determine whether it works in the normal state. For the disconnector in the normal state, the relative temperature difference method is used to determine its fault state. The greater the relative temperature difference, the more serious the fault. The experiments demonstrate that optimal HOG characteristic parameters yield the maximum accuracy of the imaging equipment. The fault diagnosis of an infrared image can be used to determine the fault and defect degree of the disconnector and provide maintenance. The model used in this study exhibits good accuracy and reliability.
-
-
表 1 隔离开关温差故障判断标准
Table 1 Criteria for diagnosing temperature difference faults in isolation switches
Equipment status Temperature difference threshold Normal [0, 0.35] General defects [0.35, 0.80] Serious disadvantage [0.80, 0.95] Critical defect (0.95, 1] 表 2 检测窗口尺寸的影响
Table 2 Effects of window size on detection
Detecting window size Block size Number of gradient histograms RGB precision Lab
precision64×128 16×16 9 74.5% 76.3% 32×64 16×16 9 94.8% 97.5% 16×32 16×16 9 73.2% 75.4% 表 3 块尺寸的影响
Table 3 Effects of block sizes
Detecting window size Block size Number of gradient histograms RGB precision Lab precision 32×64 16×16 9 94.8% 97.5% 32×64 8×16 9 74.5% 77.2% 32×64 8×8 9 70.9% 71.4% 表 4 梯度直方图数量的影响
Table 4 The Influence of the number of gradient histograms
Detecting window size Block size Number of gradient histograms RGB precision Lab precision 32×64 16×16 9 94.8% 97.5% 32×64 16×16 6 91.7% 93.2% 32×64 16×16 3 63.1% 63.2% 表 5 不同型号隔离开关的识别准确率
Table 5 Identification accuracy of different types of isolation switches
Model State The algorithm in this paper Neural network algorithm GW4 Open the gate 97.4% 96.8% GW4 Close the switch 98.3% 97.2% GW6 Open the gate 97.2% 95.3% GW6 Close the switch 98.1% 97.9% GW22 Open the gate 99.5% 99.6% GW22 Close the switch 98.7% 98.5% 表 6 隔离开关故障诊断
Table 6 Fault diagnosis of isolation switch
Serial Number Highest temperature/℃ Relative temperature difference Fault diagnosis results 1 46.2 52.1% General defects 2 68.4 83.2% Serious malfunction 3 38.5 42.2% General defects 4 82.3 96.7% Critical defect 5 46.8 53.4% General defects -
[1] 陈富国, 蔡杰, 李中旗. 基于机器视觉的高压隔离开关设备状态判别与故障诊断技术[J]. 微型电脑应用, 2022, 38(2): 191-194. CHEN Fuguo, CAI Jie, LI Zhongqi. State discrimination and failure recognition technology of high voltage disconnector equipment based on machine vision[J]. Microcomputer Applications, 2022, 38(2): 191-194.
[2] 刘今. 红外测温诊断技术在高压电力设备状态检修中的应用[J]. 能源与节能, 2021(8): 119-120. LIU Jin. Application of infrared temperature measurement and diagnosis technology in condition based maintenance of high-voltage power equipment[J]. Energy and Energy Conservation, 2021(8): 119-120.
[3] 刘立忠, 郑小翠, 柴卫军. 配电变压器低压隔离开关柜内母线短路监测研究[J]. 电气自动化, 2021, 43(5): 51-54. LIU Lizhong, ZHENG Xiaocui, CHAI Weijun. Bus short circuit monitoring in low voltage disconnector switch cabinet of distribution transformer[J]. Electrical Automation, 2021, 43(5): 51-54.
[4] Jadin Mohd Shawal, Taib Soib. Recent progress in diagnosing the reliability of electrical equipment by using infrared thermography[J]. Infrared Physics Technology, 2012, 55(4): 236-245. DOI: 10.1016/j.infrared.2012.03.002
[5] Humberto Henao, Gerard-Andre Capolino, Manes Fernandez-Cabanas, et al. Trends in fault diagnosis for electrical machines: a review of diagnostic techniques[J]. IEEE Industrial Electronics Magazine, 2014, 8(2): 31-42. DOI: 10.1109/MIE.2013.2287651
[6] 张金锋, 朱宏, 胡晨. 电力设备状态检修及故障诊断中红外技术的应用分析[J]. 电子世界, 2020(7): 167-168. ZHANG Jinfeng, ZHU Hong, HU Chen. Application of infrared technology in condition based maintenance and fault diagnosis of power equipment[J]. Electronics World, 2020(7): 167-168.
[7] 肖匀, 王文瑞, 王斌, 等. 基于变权理论的高压隔离开关健康监测系统的研究[J]. 仪表技术与传感器, 2020(3): 48-53. XIAO Yun, WANG Wenrui, WANG Bin, et al. Research on high-voltage disconnector health monitoring system based on variable weight theory[J]. Instrument Technique and Sensor, 2020(3): 48-53.
[8] 唐锴. 红外测温技术在220kV变电运行中的应用分析[J]. 通信电源技术, 2024, 41(5): 219-221. TANG Kai. Application analysis of infrared temperature measurement technology in 220 kV substation operation[J]. Telecom Power Technology, 2024, 41(5): 219-221.
[9] Choudhary M, Shafiq M, Kiitam I, et al. A review of aging models for electrical insulation in power cables[J]. Energies, 2022, 15(9): 3408. DOI: 10.3390/en15093408
[10] Haque S K M, Ardila-Rey J A, Umar Y, et al. Application and suitability of polymeric materials as insulators in electrical equipment[J]. Energies, 2021, 14(10): 2758. DOI: 10.3390/en14102758
[11] 王若平, 陈严, 王东, 等. 基于多特征提取与灰狼算法优化SVM的车内异响识别方法[J]. 计算机应用与软件, 2024, 41(3): 41-48. WANG Ruoping, CHEN Yan, WANG Dong, et al. Vehicle interior abnormal noise recognition based on multi-feature extraction and SVM optimized by gray wolf optimization[J]. Computer Applications and Software, 2024, 41(3): 41-48.
[12] 贾达菲, 杨冬冬, 高宏. 红外热像技术在电力设备故障检测中的应用[J]. 山西电力, 2018(6): 30-33. JIA Dafei, YANG Dongdong, GAO Hong. Application of infrared thermal image techniques in power equipment fault detection[J]. Shanxi Electric Power, 2018(6): 30-33.
[13] 时宇辉, 袁至, 王维庆, 等. 基于改进海鸥算法优化SVM的变压器故障诊断方法[J]. 科学技术与工程, 2024, 24(28): 12169-12176. SHI Yuhui, YUAN Zhi, WANG Weiqing, et al. Transformer fault diagnosis method based on improved seagull algorithm optimized SVM[J]. Science Technology and Engineering, 2024, 24(28): 12169-12176.
[14] 宋磊, 成鲁钰, 张清. 基于红外图像技术的高压电气设备内部缺陷自动诊断[J]. 自动化应用, 2024, 65(18): 115-116, 119. SONG Lei, CHENG Luyu, ZHANG Qing. Automatic diagnosis of internal defects in high-voltage electrical equipment based on infrared image technology[J]. Automation Application, 2024, 65(18): 115-116, 119.
[15] 严肃. 红外测温技术在变电站设备巡视中的运用分析[J]. 通信电源技术, 2018, 35(6): 176-177. YAN Su. Application analysis of infrared temperature measurement technology in substation equipment inspection[J]. Telecom Power Technology, 2018, 35(6): 176-177.