基于改进YOLOv5的红外图像目标检测算法

Infrared Image Object Detection Algorithm Based on Improved YOLOv5

  • 摘要: 针对红外图像分辨率低、纹理信息较差、远距离小目标细节模糊的缺点,从注意力机制的角度对YOLOv5s的网络结构进行调整,提出了YOLOv5s-CA算法。该算法在YOLOv5s模型的基础上添加了坐标注意力机制Coordinate Attention,该机制不仅让模型关注通道之间的位置信息,还关注空间的长期位置信息。通过在YOLOv5s网络结构中添加其它注意力机制,并与YOLOv5s-CA模型进行对比,来体现该算法在速度与精度上的优势。在自制的露天矿区红外数据集上的实验结果表明,该模型的mAP(mean average precision)达到了0.948,相比于原始模型提高了1.4%,在GeForce2080Ti设备上的推理速度能够达到3.3 ms。与现有的其它主流算法相比,该算法可以在保持速度的同时具备较高红外目标的检测精度。

     

    Abstract: To overcome the limitations of low infrared image resolution, poor texture information, and blurry details of small distant targets, we propose the YOLOv5s-CA algorithm, which modifies the YOLOv5s network structure from the perspective of the attention mechanism. The algorithm adds coordinate attention to the YOLOv5s model, enabling it to focus not only on the location information between channels but also on long-range spatial location information. By integrating this additional attention mechanism into the YOLOv5s network architecture and comparing it with the original YOLOv5s model, this study demonstrates the advantages of the algorithm in both speed and accuracy. Experimental results on a homemade infrared dataset for open-pit mining areas show that the model's mean average precision (mAP) reaches 0.948—1.4% higher than the original model—with an inference speed of 3.3 ms on a GeForce 2080 Ti device. Compared with other leading algorithms, this algorithm can maintain its speed while achieving high detection accuracy for infrared targets.

     

/

返回文章
返回