Remote Raman Spectroscopy in Natural Environments
-
摘要: 拉曼光谱遥测技术主要用于在安全距离之下对一些危险品、违禁品、变质食品等进行现场快速检测。早期拉曼光谱遥测技术大多采用可见光或近红外激光拉曼光谱技术,为了避免环境光影响,常在实验室或夜间进行。近年来,因日盲紫外激光的拉曼光谱检测具有共振效应强、不受环境光干扰、人眼相对安全等诸多特性逐渐开始被广泛应用。本文在分析自然环境下远程拉曼光谱遥测技术基础原理上,归纳了国内外可见光或近红外激光拉曼光谱遥测技术和国内外紫外激光拉曼光谱遥测技术的研究进展和现状,分析了远程紫外激光拉曼光谱应用在反恐、禁毒和食品安全等领域的优势,最后总结了自然环境下拉曼光谱遥测技术的研究难点和发展趋势。Abstract: Remote Raman spectroscopy is used primarily for on-site rapid detection of dangerous goods, contraband, and deteriorated food from a safe distance. Early applications of remote Raman spectroscopy used visible or near-infrared lasers to excite the Raman spectrum. Such experiments were often conducted in the laboratory or at night, to avoid the influence of environmental light. Recently, solar-blind ultraviolet Raman spectroscopy has been widely used because of its advantages compared to visible or near-infrared approaches. Their advantages include a strong resonance effect, lack of interference from ambient light, and relative safety for the human eye. This study reviews the development of remote visible or near-infrared and ultraviolet Raman spectroscopy based on the analysis of the basic principles in natural environments. The advantages of remote ultraviolet Raman spectroscopy in the fields of anti-terrorism, drug control, and food safety are highlighted. The current challenges and development trends in remote Raman spectroscopy in natural environments are summarized.
-
Keywords:
- solar-blind ultraviolet /
- Raman spectroscopy /
- remote detection /
- natural environment
-
0. 引言
微光夜视技术是探索夜间和极低光照度下目标图像的信息获取、转换、增强、显示、记录的一种高新光电技术,在现代战争中发挥着至关重要的作用[1-2]。近年来的冲突中,各类特种作战装备层出不穷,双方特种部队大肆利用夜视设备的优势,频繁向对方部队中缺乏夜视设备的“普通部队”出击,吊打对方“普通部队”,装备夜视设备的部队完全可以说是降维打击,在现代化设备加持下残酷的夜战形式中,从各方面说明国内仍然需要在微光夜视这一领域继续耕耘。微光像增强器是微光夜视系统的核心器件,而超二代微光像增强器(以下简称像增强器)作为众多像增强器种类之一,因其具有重量轻、体积小、电子倍增数量高等优点,被广泛应用于海、陆、空等各军兵种领域[3-4]。像增强器采用多碱材料作为光电阴极,根据光电发射理论,光电阴极膜层吸收光子激发电子跃迁,电子克服膜层表面势垒逸出,在均匀电场和高真空环境下经过微通道板(micro channel plate,MCP)倍增后形成放大的电子束,电子束激发荧光屏转换成可见光图像,并经光学纤维面板输出[5]。
像增强器的贮存、工作寿命等性能是其在军备装置上能否得到广泛应用的关键因素之一,在实际使用和贮存过程中,伴随着工作时间的增加,内部腔体的真空度逐渐降低,使用性能逐渐失效[6],像增强器失效的判定依据为亮度增益、信噪比、分辨力等某一关键性能指标降低到规定的阀值。实际生产中,超二代微光像增强管(以下简称像增强管)在装配为像增强器之前,需要开展灵敏度、分辨力、荧光屏发光效率(以下简称屏效)、MCP增益等参数测试,并且需要开展寿命试验提前筛选报废长时间工作后关键性能指标不满足要求的像增强管[7]。通过寿命试验的像增强管则与高压电源装配组合到塑料外壳等壳体内,并由硅橡胶灌封后形成像增强器,经过测试亮度增益、分辨力、信噪比等性能指标并符合要求后,可装配到夜视仪中正常使用,但随着工作时间的增加,像增强器性能指标的变化情况不得而知。因此,为进一步研究像增强器工作时间与性能指标之间的变化关系,依托工作寿命试验,从亮度增益、信噪比、分辨力等关键性能着手,对性能变化原因进行分析,为提升像增强器的工作时间奠定一定的研究基础。
1. 像增强器及试验方法
1.1 试验用像增强器
试验用像增强器由高压电源、像增强管及填充硅橡胶的塑料外壳组合而成,是由北方夜视技术股份有限公司自主研制和生产的一型高性能像增强器。像增强器采用的高压电源型号为GYH-053-4;像增强管的输入窗为防光晕玻璃,光电阴极为S25+型,微通道板型号为Φ25/8,输出窗为光纤倒像器,荧光屏采用P43荧光粉并蒸镀铝膜。针对本次试验,采用编号为#306、#308、#309、#310的4具像增强器,其主要技术指标的初始值见表 1。
表 1 像增强器主要技术指标初始值Table 1. Initial value of main technical index of four image intensifiersTube No. Sensitivity/
(μA/lm)Gain of MCP Screen effect/(lm/W) Brightness gain/((cd/m2)/lx) Resolution/
(lp/mm)SNR Working current/mA #306 908 433 15.6 14800 72 30.56 13 #308 942 339 17.9 15100 68 28.59 12 #309 902 511 16.2 15300 68 30.65 12 #310 901 455 15.0 15300 72 28.44 12 表 1所列的灵敏度、MCP增益、荧光屏发光效率为灌封前所用的像增强管主要技术指标初始值,亮度增益、分辨力、信噪比、工作电流为试验用像增强管与高压电源装配组合到塑料外壳并由硅橡胶灌封后得到的像增强器的主要技术指标初始值,以上试验数据均按GJB 2000A-2020超二代像增强器通用规范[8]中规定的测试方法获得。
1.2 试验方法
本文所用的像增强器工作寿命试验包括光应力试验和电应力试验。光应力试验是在通电状态下,对像增强器光电阴极施加输入照度为5×10-4 lx(色温2856 K)的光,在每个周期(1 h)的通电时间内,施加照度为1×10-2 lx的光持续照射5 s和施加50~200 lx的光持续照射3 s,两次光脉冲的时间间隔不小于5 min。电应力试验是在像增强器加工作电压后,在每个周期(1 h)的通电时间内,按每通电55 min、断电5 min的周期进行。试验用像增强器共有4具,每具像增强器的累计工作时间为22698 h,每经过200 h对亮度增益、信噪比和分辨力3项关键指标进行测试,试验后与其指标的初始值比较分析,获得像增强器关键性能指标随工作时间的变化情况,并将工作22698 h后的像增强器解剖形成对应的像增强管与高压电源,分别对其关键性能进行测试,分析得到像增强器长时间工作后关键性能变化的原因。
2. 关键性能变化情况与原因分析
2.1 亮度增益随工作时间的变化规律
亮度增益是像增强器的关键指标之一[9-10],反映了像增强器对所接收微弱光辐射的增强能力,其高低主要影响夜视仪的视场亮度和探测能力,固定照度环境下亮度增益越高视场亮度越大[11],探测能力越强。对于像增强器而言,要使其能在星光或者月光的条件下使用,亮度增益需要达到3000 (cd/m2)/lx以上,才能满足人眼视锥细胞视觉的光适应状态。为研究像增强器工作时间对亮度增益的影响,按照上述试验方法,每隔200 h测试像增强器的亮度增益,累计工作时长为22698 h。4具试验像增强器工作时间随亮度增益的变化规律见图 1所示。
从图 1(a)可以看出,试验用4具像增强器工作22698 h后亮度增益均随工作时间的增加出现下降,其中,#306从14800 (cd/m2)/lx下降至10400 (cd/m2)/lx,下降幅度为29.7%;#308从15100 (cd/m2)/lx下降至7800 (cd/m2)/lx,下降幅度为48.3%;#309从15300 (cd/m2)/lx下降至6800 (cd/m2)/lx,下降幅度为55.6%;#310从15300 (cd/m2)/lx下降至9200 (cd/m2)/lx,下降幅度为39.9%。为进一步分析微光像增强器亮度增益随工作时间的变化,通过4具试验像增强器亮度增益平均值拟合出亮度增益随工作时间的变化曲线,如图 1(b)所示,获得像增强器亮度增益与工作时间的变化曲线,为:
$$ G=6084×{\rm{exp}}(-t/4179)+8572$$ (1) 式中:G表示亮度增益,单位为(cd/m2)/lx;t表示工作时间,单位为h;亮度增益G与工作时间t呈指数函数变化。当像增强器累计工作时间小于10000 h时,亮度增益下降速率达39.7%,当工作时间大于10000 h后,亮度增益下降速率为7.8%。相比较而言,像增强器在初期工作阶段时,亮度增益随工作时间的变化速率较快,但随着工作时间增加,亮度增益下降速率变慢,且最终趋于平稳。总体来说,虽然像增强器亮度增益会随着工作时间的变化降低,但工作到22698 h时,其值仍然满足使用要求。
2.2 信噪比随工作时间的变化规律
信噪比是评定像增强器成像质量的综合指标[12-13],信噪比的高低直接与成像图像内的离子闪烁斑(雪花点)的数量直接相关,信噪比越高雪花点越少,反之则越多。因此,除对像增强器亮度增益与工作时间变化情况进行研究外,也对信噪比随工作时间变化情况进行探讨,试验用像增强器为同一批,每隔200 h时通过信噪比测试仪测试试验像增强器的信噪比,4具试验像增强器信噪比与工作时间的变化情况如图 2所示。
由图 2(a)可知,4具试验像增强器在工作22698 h后,其信噪比也随着工作时间的增加出现下降,其中,#306从30.56下降至26,下降幅度为14.9%;#308从28.59下降至24.59,下降幅度为14%;#309从30.65下降至25.58,下降幅度为16.5%;#310从28.94下降至24.12,下降幅度为16.7%。为更好地分析像增强器信噪比随工作时间的变化情况,通过4具试验像增强器信噪比平均值拟合出信噪比随工作时间的变化曲线,如图 2(b)中的拟合曲线,函数关系为:
$$ S/N=29.63+1.16×10^{-9}t^{2}-2.34×10^{-4}t$$ (2) 式中:S/N代表信噪比;t代表工作时间,单位为h。由图 2可知,信噪比S/N与工作时间t之间呈多项式函数关系,当工作时间小于10000 h时,信噪比平均下降速率为7.7%;当工作时间大于10000 h时,信噪比平均下降速率为8%,不同工作时间阶段的下降速率相当。因此,像增强器信噪比随着工作时间的增加,呈式(2)所示的多项式函数关系均匀下降,直至像增强器衰退或报废为止。
2.3 分辨力随工作时间的变化规律
分辨力是像增强器使用性能的重要指标之一,直接反映了像增强器分辨物体细节的能力,即能不能看清的问题[14]。分辨力越高,则微光像增强器分辨细节的能力越强。因此,对长时间工作过程中像增强器分辨力变化情况进行研究显得尤为关键。本文在研究亮度增益、信噪比后,通过分辨力测试仪对像增强器在工作22698 h后的分辨力变化情况进行统计,如表 2所示。
表 2 分辨力随工作时间的变化Table 2. Variation value of resolution with working timeWorking time/h #306 #308 #309 #310 0 72 72 68 68 1045 68 72 68 68 2205 68 72 68 68 3142 68 68 68 68 4181 72 72 68 68 5105 68 68 68 68 6203 72 68 68 68 7702 72 72 68 68 8872 72 72 68 68 9952 72 68 68 68 10952 72 72 68 68 12162 72 72 68 68 13347 72 72 72 68 14787 72 72 68 68 15867 72 72 68 68 16947 72 68 68 68 18147 72 72 68 68 19227 72 72 68 68 20427 72 72 68 68 21507 72 72 68 68 22697 72 72 68 68 像增强器分辨力通过分辨力测试仪采用显微镜目视的方法进行检测,测试中使用的USAF1951分辨力靶板由多组等宽的黑白相间线条图案组成,每组线条宽度由宽变窄。由于像增强器的分辨力存在极限性,同时分辨力靶图像线条越窄越难分辨,把刚好能分辨出最细线条细节的图案线对定义为分辨力(单位:lp/mm)。由表 2可知,除了#310的分辨力一直处于初始值68 lp/mm外,#306、#308、#309的分辨力均在初始值68 lp/mm和72 lp/mm之间波动,这是因为分辨力在测试过程中主要借助人眼进行观察判定,存在较大的主观因素,因此可以说明随着工作时间的增加,像增强器分辨力几乎保持不变。
3. 像增强器性能变化的原因分析
由图 1~2以及表 2分析可知,像增强器随着工作时间的增加,分辨力几乎保持不变,亮度增益和信噪比均以不同趋势降低。为分析亮度增益和信噪比下降的原因,将经过22698 h长时间工作试验的4具像增强器解剖形成对应的像增强管和高压电源,分别对其试验后的主要技术参数进行测试,并将其与试验前的参数进行对比,找出像增强器的性能变化原因。
3.1 像增强管关键性能变化
按照GJB 2000A-2020超二代像增强器通用规范要求,检测解剖后的像增强管灵敏度、分辨力、MCP增益(800 V)、屏效及MCP带电流5项关键技术参数,并与装配前的参数进行比较,如表 3和表 4所示。
表 3 试验前后像增强管主要性能参数对比Table 3. Comparison table of main performance parameters of image intensifier before and after the testTube No. Time of
testSensitivity/
(μA/lm)Resolution/
(lp/mm)Gain of MCP
(800 V)Screen effect MCP with current/
mA#306 Before test 908 72 433 15.6 6.1 After test 890 72 343 14.6 6.1 #308 Before test 942 68 339 17.9 4.5 After test 876 68 196 16.2 4.6 #309 Before test 902 68 511 16.2 3.5 After test 843 68 156 13.5 3.5 #310 Before test 901 72 455 15.7 4.5 After test 790 72 333 13.7 4.5 表 4 像增强管主要性能变化率Table 4. Main performance change rate of image intensifier% Pipe No. Sensitivity Resolution Gain of MCP Screen effect MCP with current #306 1.98 0.00 20.79 6.41 0.00 #308 7.01 0.00 42.18 9.50 0.02 #309 6.54 0.00 69.47 16.67 0.00 #310 12.32 0.00 26.81 12.74 0.00 Average value 6.96 0.00 39.81 11.33 0.00 由表 3可知,4具试验像增强管工作22698 h后,其灵敏度、MCP增益及屏效均出现不同程度地下降,而分辨力和MCP带电流基本不变。通过表 3中像增强管的灵敏度、分辨力、MCP增益、屏效及MCP带电流值计算得到像增强管的主要性能变化率,如表 4所示。像增强器试验前与工作22698 h试验后,分辨力和MCP带电流变化率基本为零,而灵敏度下降6.96%,MCP增益下降39.81%,屏效下降11.33%,其中MCP增益下降幅度最大。灵敏度下降原因主要与像增强器长时间工作后,内部腔体真空度逐渐降低及受光照时间过久而缓慢发生光电阴极衰退;MCP增益下降原因除与腔体真空度相关外,还与MCP本身材料及特性相关;屏效下降原因主要与荧光粉特性相关,荧光粉在实际使用过程中,存在亮度衰减效应。结合亮度增益和信噪比的相关理论分析[15-16],像增强管的MCP增益、灵敏度和屏效下降是导致像增强器亮度增益下降的主要原因,同时光电阴极灵敏度下降是导致信噪比下降的主要原因。
3.2 高压电源关键性能变化
在相同条件下,测试比较了高压电源试验前和试验后的主要技术参数。对试验后高压电源的阴极电压Vc、阳极电压Va及工作电流I关键性能进行检测,并对试验前后的变化率进行了计算,如表 5所示。
表 5 试验前后高压电源主要性能参数对比Table 5. Comparison of main performance parameters of high voltage power supply before and after the testPipe No. Time of test Vc/V Vc rate of change/% Va/kV Va rate of change/% I/mA I rate of change/% #306 Before test 194 –1.03 5.66 –0.35 11.2 –4.46 After test 192 5.64 10.7 #308 Before test 191 –1.05 5.68 0.00 11.3 2.65 After test 189 5.68 11.6 #309 Before test 194 –1.55 5.66 0.18 12.3 –1.63 After test 191 5.67 12.1 #310 Before test 195 –0.51 5.68 –0.18 11.2 –4.45 After test 194 5.67 10.7 由表 5可看出,像增强器工作22698 h后,解剖后的高压电源Vc、Va及I发生轻微变化,其中,Vc平均变化率为-1.04%;Va平均变化率为-0.09%;I平均变化率为-1.97%,I出现变化的主要原因是高压电源与像增强管匹配后需要调整亮度增益和最大输出亮度至最佳值,由于每具像增强管的MCP、光电阴极、荧光屏等部件的电性能存在差异,高电源与像增强管匹配后工作电流会出现上升或下降,但是能保证输出电压值Vc在160~240V的范围内,Va在5.6~6.1 kV的范围内即可。因此,从试验像增强器解剖的高压电源工作22698 h后的输出电压值判断,其关键性能仍可在正常工作范围内,不是导致像增强器亮度增益和信噪比下降的主要因素。
4. 结论
像增强器经过22698 h的长时间工作后,性能参数仍然满足使用要求。亮度增益与工作时间呈指数函数变化,在初期工作阶段时,亮度增益随工作时间的变化速率较快,但随着工作时间增加,亮度增益下降速率变慢,且最终趋于平稳。信噪比与工作时间呈多项式函数变化,随工作时间均匀下降。分辨力随工作时间的变化几乎保持不变。像增强器亮度增益、信噪比随工作时间加长而以不同程度下降的主要原因是MCP增益、光电阴极灵敏度、屏效的稳定性息息相关。其中,MCP增益稳定性在长时间工作后变化较大,要保证像增强器的亮度增益稳定性、信噪比及工作寿命等核心性能,需持续加强对长寿命MCP的研制,提升像增强器的使用寿命。
-
图 11 用于远程化学分析的双组分系统,在目标附近使用了紧凑远程Raman+LIBS系统和远距聚焦透镜(L)。(a)用于分析垂直表面目标和(b)结合折叠镜(M) 用于分析地面化学品目标
Figure 11. A two-component system for remote chemical analysis, which uses a compact remote Raman+LIBS system and a remote focusing lens (L) near the target. (a) For analyzing vertical surface targets and (b) combined with folding mirror (M) for analyzing ground chemical targets
-
[1] Guozhen W. Raman Spectroscopy: An Intensity Approach[M]. Beijing: Science Press, 2016.
[2] Colthup N. Introduction to Infrared and Raman Spectroscopy[M]. Amsterdam: Elsevier, 2012.
[3] 肖新月, 余振喜. 化学药品对照品图谱集: 红外、拉曼、紫外光谱[M]. 北京: 中国医学科技出版社, 2014. XIAO Xinyue, YU Zhenxi. Atlas of Chemical Reference Substances: Infrared, Raman and UV Spectra[M]. Beijing: The Medicine Science and Technology Press of China, 2014.
[4] Okuno M, Hamaguchi H. Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells[J]. Optics Letters, 2012, 35(24): 4096-4098.
[5] Schlücker S, Kiefer W. Surface enhanced Raman spectroscopy: analytical, biophysical and life science applications[J]. Analytical and Bioanalytical Chemistry, 2011, 401(8): 2329-2330. DOI: 10.1007/s00216-011-5321-8
[6] Cooney J. Satellite observations using Raman component of laser backscatter[C]//Proceedings of the Symposium on Electromagnetic Sensing of the Earth from Satellites, New York: Polytechnic Institute of Brooklyn Press, 1967, 1-10.
[7] Leonared D A. Observation of Raman scattering from the atmosphere using a pulsed nitrogen ultraviolet laser[J]. Nature, 1967, 216(5111): 142-143. DOI: 10.1038/216142a0
[8] Hirschfeld T. Range independence of signal in variable focus remote Raman spectrometry[J]. Applied Optics, 1974, 13(6): 1435-1437. DOI: 10.1364/AO.13.001435
[9] Raymond M. Laser Remote Sensing: Fundamentals and Applications[M]. New York: John Wiley & Sons, 1984.
[10] Wu M, Ray M, Fung K H, et al. Stand-off detection of chemicals by UV Raman spectroscopy[J]. Applied Spectroscopy, 2000, 54(6): 800-806. DOI: 10.1366/0003702001950418
[11] Ray M D, Sedlacek A J, WU M. Ultraviolet mini-Raman lidar for stand-off, in situ identification of chemical surface contaminants[J]. Review of Scientific Instruments, 2000, 71(9): 3485-3489. DOI: 10.1063/1.1288255
[12] Wallin S, Pettersson A, Östmark H, et al. Laser-based stand-off detection of explosives: a critical review[J]. Analytical and Bioanalytical Chemistry, 2009, 395(2): 259-274. DOI: 10.1007/s00216-009-2844-3
[13] Angel S M, Kulp T J, Vess T M. Remote-Raman spectroscopy at intermediate ranges using low-power cw lasers[J]. Applied Spectroscopy, 1992, 46(7): 1085-1091. DOI: 10.1366/0003702924124132
[14] Sharma S K, Angel S M, Ghosh M, et al. Remote pulsed laser Raman spectroscopy system for mineral analysis on planetary surfaces to 66 meters[J]. Applied Spectroscopy, 2002, 56(6): 699-705. DOI: 10.1366/000370202760077630
[15] Sharma S K, Lucey P G, Ghosh M, et al. Stand-off Raman spectroscopic detection of minerals on planetary surfaces[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2003, 59(10): 2391-2407. DOI: 10.1016/S1386-1425(03)00080-5
[16] Misra A K, Sharma S K, Chio C H, et al. Pulsed remote Raman system for daytime measurements of mineral spectra[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 61(10): 2281-2287. DOI: 10.1016/j.saa.2005.02.027
[17] Misra A K, Sharma S K, Lucey P G. Remote Raman spectroscopic detection of minerals and organics under illuminated conditions from a distance of 10 m using a single 532 nm laser pulse[J]. Applied Spectroscopy, 2006, 60(2): 223-228. DOI: 10.1366/000370206776023412
[18] Carter J C, Scaffidi J, Burnett S, et al. Stand-off Raman detection using dispersive and tunable filter based systems[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 61(10): 2288-2298. DOI: 10.1016/j.saa.2005.02.028
[19] Carter J C, Angel S M, Lawrence-Snyder M, et al. Stand-off detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument[J]. Applied Spectroscopy, 2005, 59(6): 769-775. DOI: 10.1366/0003702054280612
[20] Pettersson A, Johansson I, Wallin S, et al. Near Real-Time stand-off detection of explosives in a realistic outdoor environment at 55 m distance[J]. Propellants Explosives Pyrotechnics, 2009, 34(4): 297-306. DOI: 10.1002/prep.200800055
[21] Fleger Y, Nagli L, Gaft M, et al. Narrow gated Raman and luminescence of explosives[J]. Journal of Luminescence, 2009, 129(9): 979-983. DOI: 10.1016/j.jlumin.2009.04.008
[22] Sharma S K, Misra A K, Clegg S M, et al. Time-resolved remote Raman study of minerals under supercritical CO2 and high temperatures relevant to Venus exploration[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1922): 3167-3191. DOI: 10.1098/rsta.2010.0034
[23] Ramirez-Cedeno M L, Ortiz-Rivera W, Pacheco-Londono L C, et al. Remote detection of hazardous liquids concealed in glass and plastic containers[J]. IEEE Sensors Journal, 2010, 10(3): 693-698. DOI: 10.1109/JSEN.2009.2036373
[24] Pettersson A, Wallin S, Östmark H, et al. Explosives stand-off detection using Raman spectrpscopy: from bulk towards trace detection[C]//Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XV, 2010: 7664: 76641K.
[25] Rull F, Vegas A, Sansano A, et al. Analysis of arctic ices by remote Raman spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011, 80(1): 148-155. DOI: 10.1016/j.saa.2011.04.007
[26] Chung J H, Cho S G. Nanosecond gated Raman spectroscopy for standoff detection of hazardous materials[J]. Bulletin- Korean Chemical Society, 2014, 35(12): 3547-3552. DOI: 10.5012/bkcs.2014.35.12.3547
[27] Gulati K K, Gambhir V, Reddy M N. Detection of nitro-aromatic compound in soil and sand using time gated Raman spectroscopy[J]. Defence Science Journal, 2017, 67(5): 588-591. DOI: 10.14429/dsj.67.10290
[28] Guimbretière, G, Duraipandian S, Ricci T. Field remote stokes/anti-stokes Raman characterization of sulfur in hydrothermal vents[J]. Journal of Raman Spectroscopy, 2018, 49: 1385-1394. DOI: 10.1002/jrs.5378
[29] Kubitza S, Schröder S, Rammelkamp K, et al. Evaluation of close-up remote cw-Raman spectroscopy for in-situ planetary exploration[C]//50th Lunar and Planetary Science Conference, 2019, 2132: 2421-2425.
[30] Misra A K, Acosta-Maeda T E, Porter J N, et al. A two components approach for long range remote Raman and laser-induced breakdown (LIBS) spectroscopy using low laser pulse energy[J]. Applied Spectroscopy, 2019, 73(3): 320-328. DOI: 10.1177/0003702818812144
[31] Egan M J, Acosta-Maeda T E, Angel S M, et al. One-mirror, one-grating spatial heterodyne spectrometer for remote-sensing Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2020, 51: 1794-1801. DOI: 10.1002/jrs.5788
[32] Gasser C, González-Cabrera M, Ayora-Cañada M J, et al. Comparing mapping and direct hyperspectral imaging in stand-off Raman spectroscopy for remote material identification[J]. Journal of Raman Spectroscopy, 2019, 50: 1034-1043. DOI: 10.1002/jrs.5607
[33] Misra A K, Acosta-Maeda T E, Porter J N, et al. Remote Raman detection of chemicals from 1752 m during afternoon daylight[J]. Applied Spectroscopy, 2019, 74(2): 233-240.
[34] Sandford M W, Misra A K, Acosta-Maeda T E, et al. Detecting minerals and organics relevant to planetary exploration using a compact portable remote Raman system at 122 meters[J]. Applied Spectroscopy, 2021, 75(3): 299-306. DOI: 10.1177/0003702820943669
[35] 刘鑫, 薛晨阳, 熊继军, 等. 微型远程拉曼在深空探测中应用的可行性研究[C]//工程科技Ⅱ辑, 2008: 187-191. LIU Xin, XUE Chenyang, XIONG Jijun, et al. Feasibility study of micro remote Raman system for deep space detection[C]//Engineering Technology Part Ⅱ, 2008: 187-191.
[36] 郝凤龙, 姜玲玲, 于海辉, 等. 基于拉曼光谱技术的毒品检测仪器研究[J]. 国外电子测量技术, 2016, 35(12): 40-43. DOI: 10.3969/j.issn.1002-8978.2016.12.010 HAO F, JIANG L, YU H, et al. Research on drug detecting instrument based on raman spectroscopy[J]. Foreign Electronic Measurement Technology, 2016, 35(12): 40-43. DOI: 10.3969/j.issn.1002-8978.2016.12.010
[37] 张丹. 用于火星表面物质探测的拉曼光谱技术研究[D]. 西安: 中科院研究生院西安光机所, 2015. ZHANG D. Study of Raman Spectrum Technique for Material Detection on Mars Surface[D]. Beijing: University of Chinese Academy of Sciences, 2015.
[38] 张莉, 郑海洋, 王颖萍, 等. 远距离探测拉曼光谱特性[J]. 物理学报, 2016, 65(5): 134-143. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201605018.htm ZHANG L, ZHENG H Y, WANG Y P, et al. Remote Raman spectra characteristics[J]. Acta Phys. Sin, 2016, 65(5): 134-143. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201605018.htm
[39] 胡广骁, 熊伟, 罗海燕, 等. 用于远程探测的空间外差拉曼光谱技术研究[J]. 光谱学与光谱分析, 2016, 36(12): 3951-3957. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201612030.htm HU G X, XIONG W, LUO H Y, et al. The research of spatial heterodyne Raman spectroscopy with standoff detection[J]. Spectroscopy and Spectral Analysis, 2016, 36(12): 3951-3957. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201612030.htm
[40] 姚齐峰, 王帅, 娄小平, 等. 基于远程拉曼光谱的物质检测研究[J]. 工具技术, 2017, 51(9): 135-138. DOI: 10.3969/j.issn.1000-7008.2017.09.034 YAO Q F, WANG S, LOU X P, et al. Stand-off Raman spectrum detection for explosive materials[J]. Tool Engineering, 2017, 51(9): 135-138. DOI: 10.3969/j.issn.1000-7008.2017.09.034
[41] Mccain S T, Guenther B D, Brady D J, et al. Coded-aperture Raman imaging for standoff explosive detection[C]//Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XⅢ, 2012, 8358: 83580Q.
[42] Chirico R, Almaviva S, Botti S, et al. Stand-off detection of traces of explosives and precursors on fabrics by UV Raman spectroscopy[C]// Optics and Photonics for Counterterrorism, Crime Fighting, and Defence Ⅷ, 2012, 8546: 8546: 283-287.
[43] Fulton J. Remote detection of explosives using Raman spectroscopy[C]//Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XⅡ, 2011, 8018(1): 413-413.
[44] Almaviva S, Angelni F, Chirico R, et al. Eye-safe UV Raman spectroscopy for remote detection of explosives and their precursors in fingerprint concentration[C]//Optics and Photonics for Counterterrorism, Crime Fighting, and Defence X; and Optical Materials and Biomaterials in Security and Defence Systems Technology XI, 2014, 9253: 925303.
[45] Glimtoft M, Bââth P, Saari H, et al. Towards eye-safe standoff Raman imaging systems[C]//Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIX, 2014, 9072: 907210.
[46] Carroll J A, Izake E L, Cletus B, et al. Eye-safe UV stand-off Raman spectroscopy for the ranged detection of explosives in the field[J]. Journal of Raman Spectroscopy, 2015, 46(3): 333-338. DOI: 10.1002/jrs.4642
[47] Sharma S K, Ismail S, Angel S M, et al. Remote Raman and laser-induced fluorescence (RLIF) emission instrument for detection of mineral, organic, and biogenic materials on Mars to 100 meters radial distance[C]//Instruments, Science, and Methods for Geospace and Planetary Remote Sensing, 2004, 5660: 128-138.
[48] Gaft M, Nagli L. UV gated Raman spectroscopy for standoff detection of explosives[J]. Optical Materials, 2008, 30(11): 1739-1746. DOI: 10.1016/j.optmat.2007.11.013
[49] Yellampalle B, Lemoff B E. Raman albedo and deep-UV resonance Raman signatures of explosives[C]//Active and Passive Signatures IV, 2013, 8734: 87340G.
[50] 中国国防科技信息中心. 美拟研发小型高效紫外激光器用于生化探测[N/OL]. [2014-03-06]. 中国新闻网, http://www.chinanews.com/mil/2014/03-06/5916245.Shtml. China Defense Science and Technology Information Center. U.S. intends to develop a small high-efficiency ultraviolet laser for biochemical detection[N/OL]. [2014-03-06]. China News, http://www.chinanews.com/mil/2014/03-06/5916245.shtml.
[51] Kozu T, Yamaguchi M, Kawaguchi M, et al. Evaluating of diamond like carbon using deep UV Raman spectroscopy[J]. Integrated Ferroelectrics, 2013, 157(1): 147-156.
[52] Skulinova M, Lefebvre C, Sobron P, et al. Time-resolved stand-off UV-Raman spectroscopy for planetary exploration[J]. Planetary and Space Science, 2014, 92: 88-100. DOI: 10.1016/j.pss.2014.01.010
[53] Almaviva S, Chirico R, Nuvoli M, et al. A new eye-safe UV Raman spectrometer for the remote detection of energetic materials in fingerprint concentrations: characterization by PCA and ROC analyzes[J]. Talanta, 2015, 144(8): 420.
[54] Chirico R, Almaviva S, Colao F, et al. Proximal detection of traces of energetic materials with an eye-safe UV Raman prototype developed for civil applications[J]. Sensors, 2016, 16(1): 8.
[55] Lamsal N, Barnett P, Angel S M, et al. Remote UV Raman spectroscopy for planetary exploration using a miniature spatial heterodyne Raman spectrometer[C]//Lunar and Planetary Science Conference, 2016: 1500-1510.
[56] Lamsal N, Sharma S K, Acosta T E, et al. Ultraviolet stand-off Raman measurements using a gated spatial heterodyne Raman spectrometer[J]. Applied Spectroscopy, 2016, 70(4): 666-675. DOI: 10.1177/0003702816631304
[57] Hopkins A J, Cooper J L, Profeta L T M, et al. Portable deep-ultraviolet (DUV) Raman for standoff detection[J]. Applied Spectroscopy, 2016, 70(5): 861-873. DOI: 10.1177/0003702816638285
[58] Hufziger K T, Bykov S V, Asher S A. Ultraviolet Raman wide-field hyperspectral imaging spectrometer for standoff trace explosive detection[J]. Applied Spectroscopy, 2017, 71(2): 173-185. DOI: 10.1177/0003702816680002
[59] Shkolyar S, Eshelman E J, Farmer J D, et al. Detecting kerogen as a biosignature using colocated UV time-gated Raman and fluorescence spectroscopy[J]. Astrobiology, 2018, 18(4): 431-453. DOI: 10.1089/ast.2017.1716
[60] Gulati K K, Gulia S, Kumar N, et al. Real-time stand-off detection of improvised explosive materials using time-gated UV-Raman spectroscopy[J]. Pramana, 2019, 92(2): 1-5.
[61] Cantu L, Gallo E, Duschek F. Remote Raman scattering detection of explosives[C]//ODAS (ONERA-DLR Aerospace Symposium)-MOTAR (Measurement and Optical Techniques for Aerospace Research), 2021: (DOI: https://elib.dlr.de/141626/).https://www.researchgate.net/publication/351072675_REMOTE_RAMAN_SCATTERING_DETECTION_OF_EXPLOSIVES.
[62] Gallo E, Duschek F. Deep-UV remote Raman detection of chlorine[C]// OSA Optical Sensors and Sensing Congress, 2021: DOI: https://elib.dlr.de/143249/.
[63] 卓立汉光. 紫外共振拉曼光谱系统—UV Raman100[EB/OL]. 仪器信息网, http://www.instrument.com.cn/netshow/SH100487/C95891.htm, 2018. Zolix Intruments CO., LTD. Ultraviolet Resonance Raman Spectroscopy System—UV Raman100[EB/OL]. Instrument, http://www.instrument.com.cn/netshow/SH100487/C95891.htm, 2018.
[64] 黄保坤, 安虹宇, 范峰滔. 小型紫外拉曼光谱仪[J]. 光散射学报, 2017, 29(4): 348-353. https://www.cnki.com.cn/Article/CJFDTOTAL-GSSX201704011.htm HUANG B K, AN H Y, FAN F T. Mini UV Raman spectrometer[J]. The Journal of Light Scattering, 2017, 29(4): 348-353. https://www.cnki.com.cn/Article/CJFDTOTAL-GSSX201704011.htm
[65] 王祺. 激光诱导击穿光谱和拉曼光谱远程探测系统研究[D]. 深圳: 深圳大学, 2016. WANG Q. Study of Combined Remote Laser Induced Breakdown Spectroscopy And Raman Spectroscopy Detection System[D]. Shenzhen: Shenzhen University. 2016.
[66] ZHANG W, ZHOU R, LIU K, et al. Sulfur determination in laser-induced breakdown spectroscopy combined with resonance Raman scattering[J]. Talanta, 2020, 216: 120968-120976. DOI: 10.1016/j.talanta.2020.120968
[67] SI G, FANGY, LIU J, et al. A new eye-safe compact UV-Raman spectroscopy setup for the proximal detection of hazardous chemicals[C]//AOPC 2021: Optical Spectroscopy and Imaging, 2021, 12064: 99-105.
[68] Hagen N, Brady D J. Coded-aperture DUV spectrometer for stand-off Raman spectroscopy[C]//Next-Generation Spectroscopic Technologies Ⅱ, 2009, 7319: 73190D.
[69] Yellampalle B, Martin R, Witt K, et al. Performance comparison of single and dual-excitation-wavelength resonance-Raman explosives detectors[C]//Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XVⅢ, 2017, 10183: 101830E.