自然环境下拉曼光谱遥测技术及其应用进展

郭一新, 金伟其, 何玉青, 赵曼

郭一新, 金伟其, 何玉青, 赵曼. 自然环境下拉曼光谱遥测技术及其应用进展[J]. 红外技术, 2022, 44(6): 543-559.
引用本文: 郭一新, 金伟其, 何玉青, 赵曼. 自然环境下拉曼光谱遥测技术及其应用进展[J]. 红外技术, 2022, 44(6): 543-559.
GUO Yixin, JIN Weiqi, HE Yuqing, ZHAO Man. Remote Raman Spectroscopy in Natural Environments[J]. Infrared Technology , 2022, 44(6): 543-559.
Citation: GUO Yixin, JIN Weiqi, HE Yuqing, ZHAO Man. Remote Raman Spectroscopy in Natural Environments[J]. Infrared Technology , 2022, 44(6): 543-559.

自然环境下拉曼光谱遥测技术及其应用进展

基金项目: 

国家重点研发计划 2016YFC0800904

详细信息
    作者简介:

    郭一新(1994-),男,博士研究生,主要研究方向为光电检测技术与仪器研究、拉曼光谱技术与仪器、光电图像处理,E-mail:guoyixin94@gmail.com

    通讯作者:

    金伟其(1961-),男,教授,博士生导师,主要从事夜视与红外技术、光电图像处理、光电检测与仪器的研究,E-mail:jinwq@bit.edu.cn

  • 中图分类号: TP3

Remote Raman Spectroscopy in Natural Environments

  • 摘要: 拉曼光谱遥测技术主要用于在安全距离之下对一些危险品、违禁品、变质食品等进行现场快速检测。早期拉曼光谱遥测技术大多采用可见光或近红外激光拉曼光谱技术,为了避免环境光影响,常在实验室或夜间进行。近年来,因日盲紫外激光的拉曼光谱检测具有共振效应强、不受环境光干扰、人眼相对安全等诸多特性逐渐开始被广泛应用。本文在分析自然环境下远程拉曼光谱遥测技术基础原理上,归纳了国内外可见光或近红外激光拉曼光谱遥测技术和国内外紫外激光拉曼光谱遥测技术的研究进展和现状,分析了远程紫外激光拉曼光谱应用在反恐、禁毒和食品安全等领域的优势,最后总结了自然环境下拉曼光谱遥测技术的研究难点和发展趋势。
    Abstract: Remote Raman spectroscopy is used primarily for on-site rapid detection of dangerous goods, contraband, and deteriorated food from a safe distance. Early applications of remote Raman spectroscopy used visible or near-infrared lasers to excite the Raman spectrum. Such experiments were often conducted in the laboratory or at night, to avoid the influence of environmental light. Recently, solar-blind ultraviolet Raman spectroscopy has been widely used because of its advantages compared to visible or near-infrared approaches. Their advantages include a strong resonance effect, lack of interference from ambient light, and relative safety for the human eye. This study reviews the development of remote visible or near-infrared and ultraviolet Raman spectroscopy based on the analysis of the basic principles in natural environments. The advantages of remote ultraviolet Raman spectroscopy in the fields of anti-terrorism, drug control, and food safety are highlighted. The current challenges and development trends in remote Raman spectroscopy in natural environments are summarized.
  • 区别于传统的波纹管自调形式,记忆合金型自调式制冷器采用了另外一条自调技术路线,即利用记忆材料随温度变化产生的形状记忆效应来实现制冷器流量的调节,具有结构简单、装调方便、寿命长等优点[1]。记忆合金制冷器自调后,流量会趋于稳定,但在一些因素如振动、温度变化、制冷器记忆合金的不稳定等的影响下,稳定流量可能会发生较大变化,造成制冷器不到温或工作时间缩短。关于记忆合金自调式制冷器流量稳定性的研究,学者多从提升记忆合金弹簧的疲劳稳定性和设计预紧力来维持制冷器流量的稳定[2-5],很少有学者研究节流孔大小对制冷器流量稳定性的影响。

    由于焦耳汤姆逊效应存在,高压气体流经节流孔,压力明显降低,相应地温度大幅下降直至相变为液体,液态制冷工质蒸发后吸热来实现被冷却对象的制冷。

    节流孔直径的设计对制冷器性能有着重要的影响:直径偏小,制冷流量也偏小,制冷量不足;直径偏大,制冷工质液化率低,制冷效率不高,且探测器工作时长会受到影响。为满足制冷量和探测器工作时长的要求,节流孔直径将被限制在一个范围内。对于对流量稳定性要求较高的自调式制冷器,考虑节流孔直径对流量稳定性的影响,可以进一步寻找到一个更佳的节流孔直径。本文对一款典型的记忆合金自调式制冷器,自调机构见图 1,对其节流孔孔径在0.10~0.25 mm之间变化时的流量稳定性进行了理论和实验研究,探讨了节流孔孔径对制冷器流量稳定性的影响[6]

    图  1  记忆合金自调式制冷器结构图
    Figure  1.  The sketch of a SMA self-regulated cryocooler

    图 1是一款典型的记忆合金自调式制冷器结构,主要包括主动弹簧、形状记忆合金调节器、补偿块、平衡弹簧和阀针。制冷器通气后,高压气体先大流量流经节流孔,经节流后温度骤降,形状记忆合金弹簧被冷却收缩,主动弹簧和平衡弹簧相应地伸长,带动阀针运动关小节流孔实现流量的自动调节。

    现从理论层面分析,改变节流孔孔径大小是否有助于提高自调制冷器流量稳定性。图 2为节流孔和阀针结构示意图,气流由1断面流向2断面。

    图  2  节流孔和阀针结构示意图
    Figure  2.  The sketch of the orifice and needle

    为简化计算,现作两点假设:

    1)气流由1断面流到2断面的沿程阻力损失忽略不计;

    2)气流相变发生在2断面之后,1-2断面制冷工质保持气体状态。

    现通过能量守恒来计算制冷工质流量。由于阀针阻碍导致的局部阻力损失系数为[7]

    $$\zeta {\rm{ = }}0.5\left( {1 - \frac{{{A_2}}}{{{A_1}}}} \right)$$ (1)

    式中:A1A2分别为1、2断面的过流面积。

    由能量守恒知:

    $${P_1} = 0.5(1 - \frac{{{A_2}}}{{{A_1}}})\frac{{\rho v_2^2}}{2} + {P_{{\rm{s2}}}} + {P_{{\rm{d2}}}}$$ (2)

    式中:P1为断面1的全压;等式右侧第一项为断面1~2之间的局部压力损失,ρ为气流的密度;v2为断面2处的流速;Ps2为断面2的静压,与外界大气相通,接近于大气压,取值为0;Pd2为断面2处的动压,其表达式为:

    $${P_{{\rm{d}}2}} = \frac{{\rho v_2^2}}{2}$$ (3)

    流过断面2的流量为:

    $$ Q = {A_2}{v_2} $$ (4)

    式(2)、(3)、(4)联立:

    $${P_1} = 0.5(1 - \frac{{{A_2}}}{{{A_1}}})\frac{{\rho {Q^2}}}{{2A_2^2}} + \frac{{\rho {Q^2}}}{{2A_2^2}}$$ (5)
    $$Q = \sqrt {\frac{{A_2^2{P_1}}}{{\frac{\rho }{2} + \frac{\rho }{4}(1 - \frac{{{A_2}}}{{{A_1}}})}}} $$ (6)

    断面2面积A2可用节流孔孔径R1、阀针进入节流孔的深度l、阀针的角度α表示:

    $$Q = \sqrt {\frac{{{{\left[ {{\rm{ \mathsf{ π} }}R_1^2 - {\rm{ \mathsf{ π} }}{{(l*\tan \frac{\alpha }{2})}^2}} \right]}^2}{P_1}}}{{\frac{\rho }{2} + \frac{{\rho {{(l*\tan \frac{\alpha }{2})}^2}}}{{4R_1^2}})}}} $$ (7)

    由流量公式可知,影响流量的主要因素是节流孔孔径、阀针进入节流孔的距离、阀针的角度、进气压力、气流密度。

    本研究通过计算制冷器流量变化量来评估不同节流孔孔径制冷器的流量稳定性。对于一种特定的自调式制冷器,其调试流量一般都会设定在某一区间,计算中控制不同直径的制冷器调试流量均相同,为14.61 g/min;设扰动因素会导致阀针进入节流孔中的距离减少0.01 mm;制冷工质为氮气,节流前密度为506.25 kg/m3;1断面处的压力为27 MPa,阀针角度为30°,计算结果如表 1图 3所示。

    表  1  节流孔孔径对流量稳定性影响算例
    Table  1.  Example of the influence of orifice diameter on flow stability
    Orifice diameter/mm Setup flow rate/(g/min) Distance of needle into orifice at setup flow rate/mm Distance of needle into orifice after disturbance/mm Flow rate after disturbance/(g/min) Flow rate variation/(g/min)
    0.10 14.61 0.1634 0.1534 21.07 6.46
    0.11 14.61 0.1840 0.1740 21.80 7.19
    0.12 14.61 0.2042 0.1942 22.52 7.91
    0.13 14.61 0.2242 0.2142 23.23 8.62
    0.14 14.61 0.2439 0.2339 23.94 9.33
    0.15 14.61 0.2635 0.2535 24.65 10.04
    0.16 14.61 0.2829 0.2729 25.35 10.74
    0.17 14.61 0.3022 0.2922 26.05 11.44
    0.18 14.61 0.3214 0.3114 26.74 12.13
    0.19 14.61 0.3406 0.3306 27.44 12.83
    0.20 14.61 0.3597 0.3497 28.14 13.53
    0.21 14.61 0.3787 0.3687 28.83 14.22
    0.22 14.61 0.3977 0.3877 29.52 14.91
    0.23 14.61 0.4166 0.4066 30.22 15.61
    0.24 14.61 0.4356 0.4256 30.91 16.30
    0.25 14.61 0.4544 0.4444 31.60 16.99
    下载: 导出CSV 
    | 显示表格
    图  3  流量变化量和节流孔孔径的关系
    Figure  3.  The correlation between flow rate variation and orifice diameter

    表 1数据显示,在14.61 g/min的调试流量下,扰动因素导致阀针进入节流孔的距离减少0.01 mm时,节流孔孔径为0.25 mm的制冷器流量增加了16.99 g/min,而节流孔孔径为0.10 mm的制冷器流量增加了6.46 g/min,小于0.25 mm孔径制冷器10.53 g/min;图 3显示制冷器流量变化量随节流孔孔径增大呈线性增大趋势;说明节流孔孔径越小,制冷器流量越不容易发生变化,流量稳定性越好。

    制冷器调试流量既要满足制冷量要求,又不能超差,要处于一个合理的范围内。现分析调试流量大小对流量稳定性的影响。节流孔孔径设定为0.15 mm;调试流量在14.61~23.65 g/min之间变化;干扰因素相同,均使得阀针在节流孔中的距离减少0.01 mm;计算结果见表 2图 4

    表  2  调试流量对流量稳定性影响算例
    Table  2.  Example of the influence of adjusting flow rate on flow stability
    Orifice diameter/mm Setup flow rate/(g/min) Distance of needle into orifice at setup flow rate/mm Distance of needle into orifice after disturbance/mm Flow rate after disturbance/(g/min) Flow rate variation/(g/min)
    0.15 14.61 0.2635 0.2535 24.65 10.04
    0.15 15.62 0.2625 0.2525 25.64 10.02
    0.15 16.63 0.2615 0.2515 26.63 10.00
    0.15 17.64 0.2605 0.2505 27.63 9.99
    0.15 18.64 0.2595 0.2495 28.62 9.97
    0.15 19.65 0.2585 0.2485 29.60 9.96
    0.15 20.65 0.2575 0.2475 30.59 9.94
    0.15 21.65 0.2565 0.2465 31.58 9.93
    0.15 22.65 0.2555 0.2455 32.56 9.91
    0.15 23.65 0.2545 0.2445 33.54 9.89
    下载: 导出CSV 
    | 显示表格
    图  4  流量变化量和调试流量的关系
    Figure  4.  The correlation between flow rate variation and adjusting flow rate

    表 2数据显示,在14.61 g/min的调试流量下,受扰动因素影响,制冷器流量变化量为10.04 g/min,当调试流量增大至23.65 g/min时,制冷器流量变化量为9.89 g/min,流量变化量减少了0.15 g/min;图 4中显示流量变化量随调试流量的增大呈线性减少趋势。整体来看,调试流量增加,制冷器的流量变化量会减小,但减小幅度不大,而调试流量调的过大,很容易造成制冷器流量超差,增大调试流量对提高制冷器的流量稳定性的作用较为有限。

    理论分析表明:减小节流孔直径有助于提高制冷器的流量稳定性,改变调试流量对制冷器流量稳定性的影响较小。

    制冷器在受到自身或外界因素变化的影响下,流量会发生变化。为引入扰动因素,实验中对制冷器进行了疲劳测试和振动测试。记忆合金弹簧由于其自身材料的特点存在疲劳稳定性的问题,其低温下收缩量不稳定会影响阀针进入节流孔的距离,导致制冷器流量的变化,疲劳测试可以反映记忆合金弹簧不稳定对制冷器流量稳定性的影响;振动测试是为了模拟制冷器机动过程中受到的加速度冲击,制冷器受加速度冲击后,自调机构之间的相对位置会发生一定的变化,从而导致制冷器流量发生变化。

    疲劳测试台如图 5所示,疲劳测试设备一端与气源连接,另一端连有10个接口,可同时供10只制冷器测试。用户在控制台的可视化界面中输入工作时间、停机时间及运行次数,程序根据输入参数控制气源的输送和切断。测试在恒温、恒湿的洁净间中进行,温度为22℃、湿度为46%、净化等级为10万级。测试中,通过调节减压阀,将供气压力调节至29 MPa,工作时间设为5 min,停机时间设为15 min,运行次数设为100次。在工作时间内,程序打开气源开关,向制冷器输送高压气体,气体节流制冷,记忆合金弹簧被冷却后收缩;在停机时间内,程序关闭气源开关,停止向制冷器输送高压气体,制冷器无冷量输出,记忆合金弹簧逐渐恢复至原长,在100次的运行次数下,记忆合金弹簧经历100次的疲劳变形。

    图  5  疲劳测试实验台
    Figure  5.  Experimental platform for fatigue test

    振动测试台如图 6所示,功能振动功率谱密度如图 7所示。试验中,制冷器固定于制冷器装卡夹具中,振动过程中制冷器全程通气,气源压力29 MPa。振动频率为20~2000 Hz,最大功率谱密度为0.04 g2/Hz,总加速度均方根值为7.68 g,振动方向为振动台轴向,振动时间为10 min。

    图  6  振动测试实验台
    Figure  6.  Experimental platform for vibration test
    图  7  功能振动功率谱密度
    Figure  7.  Functional vibration power spectral density

    记忆合金自调式制冷器节流孔直径通常在0.10~0.25 mm之间。为使对比明显,应选择直径跨度较大的节流孔。考虑到0.10 mm附近的节流孔加工难度大,精度较难保证,因此选择直径为0.15 mm和0.25 mm两种节流孔用实验研究。实验中,0.15 mm和0.25 mm两种节流孔规格的制冷器各制作9只,由于将制冷器的流量调至完全相同是非常困难的,实验中将制冷器在29 MPa进行调试,调试流量保持在15~18 g/min的小区间变化。对制冷器调试后、疲劳测试后、振动后的流量进行测试,测试压力为29 MPa和22 MPa,共有6种不同的工况。所用流量计为质量流量计,如图 8所示。测得的流量数据如表 3表 4所示。

    图  8  质量流量计
    Figure  8.  Mass flow meter
    表  3  0.15 mm节流孔制冷器流量数据
    Table  3.  Flow rate data of cryocoolers with 0.15 mm orifice
    Cryocooler number Setup flow rate/(g/min) Flow rate after fatigue test/(g/min) Flow rate after vibration test /(g/min)
    29 MPa 22 MPa 29 MPa 22 MPa 29 MPa 22 MPa
    A1 17.35 14.16 15.61 11.4 16.75 15.07
    A2 16.47 12.32 16.9 14.3 15.73 14.57
    A3 16.5 13.25 16.18 14.6 15.89 13.87
    A4 16.15 12.38 14.32 11.83 11.92 8.13
    A5 16.45 13.66 17.17 15.7 18.04 15.1
    A6 15.16 11.85 16.45 13.95 16.19 13.56
    A7 15.84 13.35 15.04 13.11 16.07 12.9
    A8 16.67 12.36 18.07 14.75 17.99 14.05
    A9 15.44 13.68 15.19 13.01 16.06 15.34
    下载: 导出CSV 
    | 显示表格
    表  4  0.25 mm节流孔制冷器流量数据
    Table  4.  Flow rate data of cryocoolers with 0.25 mm orifice
    Cryocooler number Setup flow rate/(g/min) Flow rate after fatigue test/(g/min) Flow rate after vibration test /(g/min)
    29 MPa 22 MPa 29 MPa 22 MPa 29 MPa 22 MPa
    B1 16.63 12.33 15.1 12.1 17.13 13.56
    B2 15.28 12.97 15.9 10.54 15.84 9.89
    B3 17.8 14.43 17.91 11.07 18.33 12.32
    B4 15.35 11.67 16.4 13.34 16.17 13.57
    B5 16.92 15.3 14.31 11.61 21.42 18.87
    B6 16.32 14.6 17.2 13.41 21.13 17.23
    B7 17.87 15.33 16.66 14.12 16.42 13.89
    B8 15.19 13.3 19.4 17.4 12.41 5.77
    B9 16.77 14.62 16.77 14.62 18.04 15.46
    下载: 导出CSV 
    | 显示表格

    为比较两种不同规格制冷器的流量稳定性,现将调试后流量作为基准流量,记为Q0,疲劳测试后流量和振动测试后流量记为Q1Q2,计算制冷器的流量方差σ和方差均值$\bar \sigma $,如式(8)和式(9)所示。计算制冷器在29 MPa和22 MPa下的流量方差,结果如表 5所示。

    $$\sigma = \frac{{{{({Q_1} - {Q_0})}^2} + {{({Q_2} - {Q_0})}^2}}}{2}$$ (8)
    $$\bar \sigma = \frac{{\sum\limits_{i = 1}^9 {{\sigma _i}} }}{9}$$ (9)
    表  5  0.15 mm/0.25 mm孔径制冷器流量方差
    Table  5.  Flow rate variance of cryocoolers with 0.15 mm and 0.25 mm orifice
    Cryocooler number Flow rate variance under 29 MPa Flow rate variance under 22 MPa Cryocooler number Flow rate variance under 29 MPa Flow rate variance under 22 MPa
    A1 1.6938 4.2229 B1 1.29545 0.7829
    A2 0.3662 4.4915 B2 0.349 7.69565
    A3 0.2373 1.1035 B3 0.1465 7.87085
    A4 10.6209 9.1825 B4 0.88745 3.19945
    A5 1.5233 3.1176 B5 13.53105 13.1805
    A6 1.3625 3.6671 B6 11.95525 4.1665
    A7 0.3465 0.1301 B7 1.7833 1.76885
    A8 1.8512 4.2841 B8 12.72625 36.75545
    A9 0.2235 1.6023 B9 0.80645 0.3528
    Avarage 2.6932 3.5335 Avarage 4.8311 8.4192
    下载: 导出CSV 
    | 显示表格

    从方差均值来看:0.15 mm节流孔的制冷器在29 MPa和22 MPa下的流量方差分别为2.6932和3.5335,而0.25 mm节流孔的制冷器在两种压力下的方差均值分别为4.8311和8.4192,明显大于节流孔直径为0.15 mm的情况。实验结果表明:0.15 mm节流孔孔径的制冷器在29 MPa和22 MPa下的流量方差波动均较小,不容易发生较大的流量变化。

    流量稳定性是评价自调型制冷器性能的一个重要指标。制冷器流量增大会导致工作时长缩短,流量减小会导致制冷量不足。本文从理论分析和实验研究两种方法出发,探究了节流孔孔径对记忆合金自调式制冷器的流量稳定性的影响。研究表明:在满足其他使用要求的情况下,节流孔孔径设计地越小,制冷器的流量稳定性越好。本文研究内容有助于记忆合金型自调式制冷器设计优化。

  • 图  1   早期拉曼系统示意图(激光器/中继光路未画)

    Figure  1.   Schematic diagram of early Raman system (The laser and associated optics are not shown)

    图  2   早期的远程拉曼系统结构设计图

    Figure  2.   Schematic diagram of early remote Raman system

    图  3   夏威夷大学车载远程拉曼光谱检测设备

    Figure  3.   Photograph of the actual remote Raman system on a trolley made by University of Hawaii

    图  4   AOTF和基于AOTF的脉冲激光激发远程单点测量拉曼光谱系统

    Figure  4.   TeO2 non-collinear AOTF and schematic diagrams of single-point, fiber-coupled, stand-off, pulsed Raman AOTF-based systems

    图  5   远程拉曼系统结构示意图

    Figure  5.   Experimental setup used for standoff Raman detection

    图  6   200 m营房里2g TATP探测结果

    Figure  6.   Raman spectra of 2g TATP in the barrack, obtained from 200 m distance through the window

    图  7   远程便携式拉曼光谱仪结构及北极现场

    Figure  7.   Structure of remote portable Raman spectrometer in arctic site

    图  8   系统原理图和实验室原型远程拉曼系统

    Figure  8.   Schematic diagram and laboratory prototype of remote Raman system

    图  9   时间门控拉曼技术原理图

    Figure  9.   Schematic diagram of time-gated Raman technology

    图  10   检测火山喷气远程拉曼系统结构示意图

    Figure  10.   Schematic diagram of remote Raman system for detecting volcanic jet

    图  11   用于远程化学分析的双组分系统,在目标附近使用了紧凑远程Raman+LIBS系统和远距聚焦透镜(L)。(a)用于分析垂直表面目标和(b)结合折叠镜(M) 用于分析地面化学品目标

    Figure  11.   A two-component system for remote chemical analysis, which uses a compact remote Raman+LIBS system and a remote focusing lens (L) near the target. (a) For analyzing vertical surface targets and (b) combined with folding mirror (M) for analyzing ground chemical targets

    图  12   新型空间外差拉曼光谱仪系统示意图

    Figure  12.   Schematic diagram of the new Raman spatial heterodyne spectrometer

    图  13   高光谱远程拉曼成像结构示意图

    Figure  13.   Schematic diagram of hyperspectral long-range Raman imaging

    图  14   超远程拉曼检测系统示意图

    Figure  14.   Schematic diagram of super-remote Raman detection system

    图  15   拉曼检测系统结构示意图和系统实物图

    Figure  15.   Schematic diagram of Raman detection system and photograph of the system

    图  16   公安部一所的拉曼光谱检测仪

    Figure  16.   Raman spectrometer of First Research Institute of the Ministry of Public Security

    图  17   可见光远距离拉曼光谱探测系统

    Figure  17.   Remote Raman system using visible laser

    图  18   卓立汉光手持式拉曼光谱仪

    Figure  18.   Hand-held Raman spectrometer produced by Beijing ZOLIX Instruments Company

    图  19   拉曼与荧光光谱(Laser Line为激光发射源)

    Figure  19.   Raman response and fluorescence spectrum (Laser Line is the response of the laser source)

    图  20   早期266 nm紫外远程拉曼系统结构示意图

    Figure  20.   Schematic diagram of early remote UV(266 nm) Raman system

    图  21   紫外拉曼光谱检测系统原理及实验原型

    Figure  21.   Schematic diagram and prototype of remote UV Raman system

    图  22   测量爆炸物拉曼光谱实验装置及通过特氟龙散射获取拉曼反照率方法

    Figure  22.   Experimental setup and approach for measurement of Raman Albedo using characterized laser return from Teflon surface

    图  23   紫外成像拉曼系统原理图和原型系统

    Figure  23.   Schematic diagram and prototype of the UV standoff Raman imaging system

    图  24   远程深紫外拉曼设备(a)及其结构示意图(b)

    Figure  24.   (a) The standoff Raman apparatus. (b)Sketch of the whole device

    图  25   30 cm远的特氟龙紫外拉曼光谱及人眼安全检测距离

    Figure  25.   Raman spectra of Teflon collected from 30 cm away and eye-safe detection range

    图  26   新型近距人体高能物质拉曼光谱探测装置

    Figure  26.   A new Raman-based apparatus for proximal detection of energetic materials on people

    图  27   远程空间外差拉曼光谱仪,平面分束镜和补偿镜(左)与望远系统相连(右)

    Figure  27.   Schematic of the SHRS with plate beamsplitter and compensator plate (left), coupled to a telescope (right)

    图  28   便携式深紫外(DUV)远程拉曼探测仪及其检测结果

    Figure  28.   Portable stand-off deep-UV(DUP) Raman spectrometer and Raman detecting results

    图  29   深紫外拉曼隔离宽场成像光谱仪

    Figure  29.   Schematic of the standoff deep UV hyperspectral Raman imaging spectrometer

    图  30   基于门控拉曼光谱的爆炸物检测系统

    Figure  30.   Schematic of time-gated stand-off detection system for detecting explosive materials

    图  31   紫外共振拉曼三联光谱仪及其组成

    Figure  31.   Appearance and schematic of UV Raman triple cascade spectrometer

    图  32   远程物质LIBS与拉曼探测实验平台

    Figure  32.   Remote LIBS and Raman detection experimental platform

    图  33   LIBS+拉曼光谱仪系统示意图

    Figure  33.   Schematic diagram of LIBS+Raman spectrometer system

    图  34   紧凑型近端紫外拉曼光谱仪示意图

    Figure  34.   Schematic diagram of compact near-field ultraviolet Raman spectrometer

    图  35   三通道紫外拉曼光谱检测仪及其拉曼光谱

    Figure  35.   Three-channel UV Raman spectrometer and the Raman spectrum showing on the software

  • [1]

    Guozhen W. Raman Spectroscopy: An Intensity Approach[M]. Beijing: Science Press, 2016.

    [2]

    Colthup N. Introduction to Infrared and Raman Spectroscopy[M]. Amsterdam: Elsevier, 2012.

    [3] 肖新月, 余振喜. 化学药品对照品图谱集: 红外、拉曼、紫外光谱[M]. 北京: 中国医学科技出版社, 2014.

    XIAO Xinyue, YU Zhenxi. Atlas of Chemical Reference Substances: Infrared, Raman and UV Spectra[M]. Beijing: The Medicine Science and Technology Press of China, 2014.

    [4]

    Okuno M, Hamaguchi H. Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells[J]. Optics Letters, 2012, 35(24): 4096-4098.

    [5]

    Schlücker S, Kiefer W. Surface enhanced Raman spectroscopy: analytical, biophysical and life science applications[J]. Analytical and Bioanalytical Chemistry, 2011, 401(8): 2329-2330. DOI: 10.1007/s00216-011-5321-8

    [6]

    Cooney J. Satellite observations using Raman component of laser backscatter[C]//Proceedings of the Symposium on Electromagnetic Sensing of the Earth from Satellites, New York: Polytechnic Institute of Brooklyn Press, 1967, 1-10.

    [7]

    Leonared D A. Observation of Raman scattering from the atmosphere using a pulsed nitrogen ultraviolet laser[J]. Nature, 1967, 216(5111): 142-143. DOI: 10.1038/216142a0

    [8]

    Hirschfeld T. Range independence of signal in variable focus remote Raman spectrometry[J]. Applied Optics, 1974, 13(6): 1435-1437. DOI: 10.1364/AO.13.001435

    [9]

    Raymond M. Laser Remote Sensing: Fundamentals and Applications[M]. New York: John Wiley & Sons, 1984.

    [10]

    Wu M, Ray M, Fung K H, et al. Stand-off detection of chemicals by UV Raman spectroscopy[J]. Applied Spectroscopy, 2000, 54(6): 800-806. DOI: 10.1366/0003702001950418

    [11]

    Ray M D, Sedlacek A J, WU M. Ultraviolet mini-Raman lidar for stand-off, in situ identification of chemical surface contaminants[J]. Review of Scientific Instruments, 2000, 71(9): 3485-3489. DOI: 10.1063/1.1288255

    [12]

    Wallin S, Pettersson A, Östmark H, et al. Laser-based stand-off detection of explosives: a critical review[J]. Analytical and Bioanalytical Chemistry, 2009, 395(2): 259-274. DOI: 10.1007/s00216-009-2844-3

    [13]

    Angel S M, Kulp T J, Vess T M. Remote-Raman spectroscopy at intermediate ranges using low-power cw lasers[J]. Applied Spectroscopy, 1992, 46(7): 1085-1091. DOI: 10.1366/0003702924124132

    [14]

    Sharma S K, Angel S M, Ghosh M, et al. Remote pulsed laser Raman spectroscopy system for mineral analysis on planetary surfaces to 66 meters[J]. Applied Spectroscopy, 2002, 56(6): 699-705. DOI: 10.1366/000370202760077630

    [15]

    Sharma S K, Lucey P G, Ghosh M, et al. Stand-off Raman spectroscopic detection of minerals on planetary surfaces[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2003, 59(10): 2391-2407. DOI: 10.1016/S1386-1425(03)00080-5

    [16]

    Misra A K, Sharma S K, Chio C H, et al. Pulsed remote Raman system for daytime measurements of mineral spectra[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 61(10): 2281-2287. DOI: 10.1016/j.saa.2005.02.027

    [17]

    Misra A K, Sharma S K, Lucey P G. Remote Raman spectroscopic detection of minerals and organics under illuminated conditions from a distance of 10 m using a single 532 nm laser pulse[J]. Applied Spectroscopy, 2006, 60(2): 223-228. DOI: 10.1366/000370206776023412

    [18]

    Carter J C, Scaffidi J, Burnett S, et al. Stand-off Raman detection using dispersive and tunable filter based systems[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 61(10): 2288-2298. DOI: 10.1016/j.saa.2005.02.028

    [19]

    Carter J C, Angel S M, Lawrence-Snyder M, et al. Stand-off detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument[J]. Applied Spectroscopy, 2005, 59(6): 769-775. DOI: 10.1366/0003702054280612

    [20]

    Pettersson A, Johansson I, Wallin S, et al. Near Real-Time stand-off detection of explosives in a realistic outdoor environment at 55 m distance[J]. Propellants Explosives Pyrotechnics, 2009, 34(4): 297-306. DOI: 10.1002/prep.200800055

    [21]

    Fleger Y, Nagli L, Gaft M, et al. Narrow gated Raman and luminescence of explosives[J]. Journal of Luminescence, 2009, 129(9): 979-983. DOI: 10.1016/j.jlumin.2009.04.008

    [22]

    Sharma S K, Misra A K, Clegg S M, et al. Time-resolved remote Raman study of minerals under supercritical CO2 and high temperatures relevant to Venus exploration[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1922): 3167-3191. DOI: 10.1098/rsta.2010.0034

    [23]

    Ramirez-Cedeno M L, Ortiz-Rivera W, Pacheco-Londono L C, et al. Remote detection of hazardous liquids concealed in glass and plastic containers[J]. IEEE Sensors Journal, 2010, 10(3): 693-698. DOI: 10.1109/JSEN.2009.2036373

    [24]

    Pettersson A, Wallin S, Östmark H, et al. Explosives stand-off detection using Raman spectrpscopy: from bulk towards trace detection[C]//Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XV, 2010: 7664: 76641K.

    [25]

    Rull F, Vegas A, Sansano A, et al. Analysis of arctic ices by remote Raman spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011, 80(1): 148-155. DOI: 10.1016/j.saa.2011.04.007

    [26]

    Chung J H, Cho S G. Nanosecond gated Raman spectroscopy for standoff detection of hazardous materials[J]. Bulletin- Korean Chemical Society, 2014, 35(12): 3547-3552. DOI: 10.5012/bkcs.2014.35.12.3547

    [27]

    Gulati K K, Gambhir V, Reddy M N. Detection of nitro-aromatic compound in soil and sand using time gated Raman spectroscopy[J]. Defence Science Journal, 2017, 67(5): 588-591. DOI: 10.14429/dsj.67.10290

    [28]

    Guimbretière, G, Duraipandian S, Ricci T. Field remote stokes/anti-stokes Raman characterization of sulfur in hydrothermal vents[J]. Journal of Raman Spectroscopy, 2018, 49: 1385-1394. DOI: 10.1002/jrs.5378

    [29]

    Kubitza S, Schröder S, Rammelkamp K, et al. Evaluation of close-up remote cw-Raman spectroscopy for in-situ planetary exploration[C]//50th Lunar and Planetary Science Conference, 2019, 2132: 2421-2425.

    [30]

    Misra A K, Acosta-Maeda T E, Porter J N, et al. A two components approach for long range remote Raman and laser-induced breakdown (LIBS) spectroscopy using low laser pulse energy[J]. Applied Spectroscopy, 2019, 73(3): 320-328. DOI: 10.1177/0003702818812144

    [31]

    Egan M J, Acosta-Maeda T E, Angel S M, et al. One-mirror, one-grating spatial heterodyne spectrometer for remote-sensing Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2020, 51: 1794-1801. DOI: 10.1002/jrs.5788

    [32]

    Gasser C, González-Cabrera M, Ayora-Cañada M J, et al. Comparing mapping and direct hyperspectral imaging in stand-off Raman spectroscopy for remote material identification[J]. Journal of Raman Spectroscopy, 2019, 50: 1034-1043. DOI: 10.1002/jrs.5607

    [33]

    Misra A K, Acosta-Maeda T E, Porter J N, et al. Remote Raman detection of chemicals from 1752 m during afternoon daylight[J]. Applied Spectroscopy, 2019, 74(2): 233-240.

    [34]

    Sandford M W, Misra A K, Acosta-Maeda T E, et al. Detecting minerals and organics relevant to planetary exploration using a compact portable remote Raman system at 122 meters[J]. Applied Spectroscopy, 2021, 75(3): 299-306. DOI: 10.1177/0003702820943669

    [35] 刘鑫, 薛晨阳, 熊继军, 等. 微型远程拉曼在深空探测中应用的可行性研究[C]//工程科技Ⅱ辑, 2008: 187-191.

    LIU Xin, XUE Chenyang, XIONG Jijun, et al. Feasibility study of micro remote Raman system for deep space detection[C]//Engineering Technology Part Ⅱ, 2008: 187-191.

    [36] 郝凤龙, 姜玲玲, 于海辉, 等. 基于拉曼光谱技术的毒品检测仪器研究[J]. 国外电子测量技术, 2016, 35(12): 40-43. DOI: 10.3969/j.issn.1002-8978.2016.12.010

    HAO F, JIANG L, YU H, et al. Research on drug detecting instrument based on raman spectroscopy[J]. Foreign Electronic Measurement Technology, 2016, 35(12): 40-43. DOI: 10.3969/j.issn.1002-8978.2016.12.010

    [37] 张丹. 用于火星表面物质探测的拉曼光谱技术研究[D]. 西安: 中科院研究生院西安光机所, 2015.

    ZHANG D. Study of Raman Spectrum Technique for Material Detection on Mars Surface[D]. Beijing: University of Chinese Academy of Sciences, 2015.

    [38] 张莉, 郑海洋, 王颖萍, 等. 远距离探测拉曼光谱特性[J]. 物理学报, 2016, 65(5): 134-143. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201605018.htm

    ZHANG L, ZHENG H Y, WANG Y P, et al. Remote Raman spectra characteristics[J]. Acta Phys. Sin, 2016, 65(5): 134-143. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201605018.htm

    [39] 胡广骁, 熊伟, 罗海燕, 等. 用于远程探测的空间外差拉曼光谱技术研究[J]. 光谱学与光谱分析, 2016, 36(12): 3951-3957. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201612030.htm

    HU G X, XIONG W, LUO H Y, et al. The research of spatial heterodyne Raman spectroscopy with standoff detection[J]. Spectroscopy and Spectral Analysis, 2016, 36(12): 3951-3957. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201612030.htm

    [40] 姚齐峰, 王帅, 娄小平, 等. 基于远程拉曼光谱的物质检测研究[J]. 工具技术, 2017, 51(9): 135-138. DOI: 10.3969/j.issn.1000-7008.2017.09.034

    YAO Q F, WANG S, LOU X P, et al. Stand-off Raman spectrum detection for explosive materials[J]. Tool Engineering, 2017, 51(9): 135-138. DOI: 10.3969/j.issn.1000-7008.2017.09.034

    [41]

    Mccain S T, Guenther B D, Brady D J, et al. Coded-aperture Raman imaging for standoff explosive detection[C]//Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XⅢ, 2012, 8358: 83580Q.

    [42]

    Chirico R, Almaviva S, Botti S, et al. Stand-off detection of traces of explosives and precursors on fabrics by UV Raman spectroscopy[C]// Optics and Photonics for Counterterrorism, Crime Fighting, and Defence Ⅷ, 2012, 8546: 8546: 283-287.

    [43]

    Fulton J. Remote detection of explosives using Raman spectroscopy[C]//Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XⅡ, 2011, 8018(1): 413-413.

    [44]

    Almaviva S, Angelni F, Chirico R, et al. Eye-safe UV Raman spectroscopy for remote detection of explosives and their precursors in fingerprint concentration[C]//Optics and Photonics for Counterterrorism, Crime Fighting, and Defence X; and Optical Materials and Biomaterials in Security and Defence Systems Technology XI, 2014, 9253: 925303.

    [45]

    Glimtoft M, Bââth P, Saari H, et al. Towards eye-safe standoff Raman imaging systems[C]//Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIX, 2014, 9072: 907210.

    [46]

    Carroll J A, Izake E L, Cletus B, et al. Eye-safe UV stand-off Raman spectroscopy for the ranged detection of explosives in the field[J]. Journal of Raman Spectroscopy, 2015, 46(3): 333-338. DOI: 10.1002/jrs.4642

    [47]

    Sharma S K, Ismail S, Angel S M, et al. Remote Raman and laser-induced fluorescence (RLIF) emission instrument for detection of mineral, organic, and biogenic materials on Mars to 100 meters radial distance[C]//Instruments, Science, and Methods for Geospace and Planetary Remote Sensing, 2004, 5660: 128-138.

    [48]

    Gaft M, Nagli L. UV gated Raman spectroscopy for standoff detection of explosives[J]. Optical Materials, 2008, 30(11): 1739-1746. DOI: 10.1016/j.optmat.2007.11.013

    [49]

    Yellampalle B, Lemoff B E. Raman albedo and deep-UV resonance Raman signatures of explosives[C]//Active and Passive Signatures IV, 2013, 8734: 87340G.

    [50] 中国国防科技信息中心. 美拟研发小型高效紫外激光器用于生化探测[N/OL]. [2014-03-06]. 中国新闻网, http://www.chinanews.com/mil/2014/03-06/5916245.Shtml.

    China Defense Science and Technology Information Center. U.S. intends to develop a small high-efficiency ultraviolet laser for biochemical detection[N/OL]. [2014-03-06]. China News, http://www.chinanews.com/mil/2014/03-06/5916245.shtml.

    [51]

    Kozu T, Yamaguchi M, Kawaguchi M, et al. Evaluating of diamond like carbon using deep UV Raman spectroscopy[J]. Integrated Ferroelectrics, 2013, 157(1): 147-156.

    [52]

    Skulinova M, Lefebvre C, Sobron P, et al. Time-resolved stand-off UV-Raman spectroscopy for planetary exploration[J]. Planetary and Space Science, 2014, 92: 88-100. DOI: 10.1016/j.pss.2014.01.010

    [53]

    Almaviva S, Chirico R, Nuvoli M, et al. A new eye-safe UV Raman spectrometer for the remote detection of energetic materials in fingerprint concentrations: characterization by PCA and ROC analyzes[J]. Talanta, 2015, 144(8): 420.

    [54]

    Chirico R, Almaviva S, Colao F, et al. Proximal detection of traces of energetic materials with an eye-safe UV Raman prototype developed for civil applications[J]. Sensors, 2016, 16(1): 8.

    [55]

    Lamsal N, Barnett P, Angel S M, et al. Remote UV Raman spectroscopy for planetary exploration using a miniature spatial heterodyne Raman spectrometer[C]//Lunar and Planetary Science Conference, 2016: 1500-1510.

    [56]

    Lamsal N, Sharma S K, Acosta T E, et al. Ultraviolet stand-off Raman measurements using a gated spatial heterodyne Raman spectrometer[J]. Applied Spectroscopy, 2016, 70(4): 666-675. DOI: 10.1177/0003702816631304

    [57]

    Hopkins A J, Cooper J L, Profeta L T M, et al. Portable deep-ultraviolet (DUV) Raman for standoff detection[J]. Applied Spectroscopy, 2016, 70(5): 861-873. DOI: 10.1177/0003702816638285

    [58]

    Hufziger K T, Bykov S V, Asher S A. Ultraviolet Raman wide-field hyperspectral imaging spectrometer for standoff trace explosive detection[J]. Applied Spectroscopy, 2017, 71(2): 173-185. DOI: 10.1177/0003702816680002

    [59]

    Shkolyar S, Eshelman E J, Farmer J D, et al. Detecting kerogen as a biosignature using colocated UV time-gated Raman and fluorescence spectroscopy[J]. Astrobiology, 2018, 18(4): 431-453. DOI: 10.1089/ast.2017.1716

    [60]

    Gulati K K, Gulia S, Kumar N, et al. Real-time stand-off detection of improvised explosive materials using time-gated UV-Raman spectroscopy[J]. Pramana, 2019, 92(2): 1-5.

    [61]

    Cantu L, Gallo E, Duschek F. Remote Raman scattering detection of explosives[C]//ODAS (ONERA-DLR Aerospace Symposium)-MOTAR (Measurement and Optical Techniques for Aerospace Research), 2021: (DOI: https://elib.dlr.de/141626/).https://www.researchgate.net/publication/351072675_REMOTE_RAMAN_SCATTERING_DETECTION_OF_EXPLOSIVES.

    [62]

    Gallo E, Duschek F. Deep-UV remote Raman detection of chlorine[C]// OSA Optical Sensors and Sensing Congress, 2021: DOI: https://elib.dlr.de/143249/.

    [63] 卓立汉光. 紫外共振拉曼光谱系统—UV Raman100[EB/OL]. 仪器信息网, http://www.instrument.com.cn/netshow/SH100487/C95891.htm, 2018.

    Zolix Intruments CO., LTD. Ultraviolet Resonance Raman Spectroscopy System—UV Raman100[EB/OL]. Instrument, http://www.instrument.com.cn/netshow/SH100487/C95891.htm, 2018.

    [64] 黄保坤, 安虹宇, 范峰滔. 小型紫外拉曼光谱仪[J]. 光散射学报, 2017, 29(4): 348-353. https://www.cnki.com.cn/Article/CJFDTOTAL-GSSX201704011.htm

    HUANG B K, AN H Y, FAN F T. Mini UV Raman spectrometer[J]. The Journal of Light Scattering, 2017, 29(4): 348-353. https://www.cnki.com.cn/Article/CJFDTOTAL-GSSX201704011.htm

    [65] 王祺. 激光诱导击穿光谱和拉曼光谱远程探测系统研究[D]. 深圳: 深圳大学, 2016.

    WANG Q. Study of Combined Remote Laser Induced Breakdown Spectroscopy And Raman Spectroscopy Detection System[D]. Shenzhen: Shenzhen University. 2016.

    [66]

    ZHANG W, ZHOU R, LIU K, et al. Sulfur determination in laser-induced breakdown spectroscopy combined with resonance Raman scattering[J]. Talanta, 2020, 216: 120968-120976. DOI: 10.1016/j.talanta.2020.120968

    [67]

    SI G, FANGY, LIU J, et al. A new eye-safe compact UV-Raman spectroscopy setup for the proximal detection of hazardous chemicals[C]//AOPC 2021: Optical Spectroscopy and Imaging, 2021, 12064: 99-105.

    [68]

    Hagen N, Brady D J. Coded-aperture DUV spectrometer for stand-off Raman spectroscopy[C]//Next-Generation Spectroscopic Technologies Ⅱ, 2009, 7319: 73190D.

    [69]

    Yellampalle B, Martin R, Witt K, et al. Performance comparison of single and dual-excitation-wavelength resonance-Raman explosives detectors[C]//Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XVⅢ, 2017, 10183: 101830E.

  • 期刊类型引用(1)

    1. 张巍,苏鹏翼,高涛,贾宝军. 弹簧参数对记忆合金式J-T制冷器流量的影响. 低温与超导. 2022(08): 93-99 . 百度学术

    其他类型引用(0)

图(35)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  67
  • PDF下载量:  54
  • 被引次数: 1
出版历程
  • 收稿日期:  2019-07-02
  • 修回日期:  2022-05-29
  • 刊出日期:  2022-06-19

目录

/

返回文章
返回
x 关闭 永久关闭

尊敬的专家、作者、读者:

端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

感谢您对本刊的支持!

《红外技术》编辑部

2024年6月6日