红外望远镜变步长自动对焦设计

杨鹏博, 李洁, 崔文楠, 张涛

杨鹏博, 李洁, 崔文楠, 张涛. 红外望远镜变步长自动对焦设计[J]. 红外技术, 2021, 43(3): 218-224.
引用本文: 杨鹏博, 李洁, 崔文楠, 张涛. 红外望远镜变步长自动对焦设计[J]. 红外技术, 2021, 43(3): 218-224.
YANG Pengbo, LI Jie, CUI Wennan, ZHANG Tao. Variable Step Autofocus Design for Infrared Telescopes[J]. Infrared Technology , 2021, 43(3): 218-224.
Citation: YANG Pengbo, LI Jie, CUI Wennan, ZHANG Tao. Variable Step Autofocus Design for Infrared Telescopes[J]. Infrared Technology , 2021, 43(3): 218-224.

红外望远镜变步长自动对焦设计

详细信息
    作者简介:

    杨鹏博(1996-),男,陕西宝鸡人,硕士生,研究领域为人工智能及数字图像处理,E-mail: yangpb@shanghaitech.edu.cn

    通讯作者:

    崔文楠(1970-),男,研究员,硕士生导师,主要从事空间光电探测技术领域的研究。E-mail: cuiwennan@mail.sitp.ac.cn

    张涛(1966-),男,陕西西安人,研究员,博士生导师,主要从事空间光电探测技术领域的研究。E-mail: haozzh@sina.com

  • 中图分类号: TP391

Variable Step Autofocus Design for Infrared Telescopes

  • 摘要: 在远距离目标检测和跟踪的过程中,成像清晰起着至关重要的作用。红外望远镜系统的成像距离远、景深短、失焦引起图像模糊。由于大气折射,望远镜所成的像处于不断变化之中,造成传统对焦算法对焦成功率、效率偏低。为了提高自动对焦的成功率和速度,采用了一种具备变步长的爬山法,利用多次求图像清晰度取其中位数的方法保证清晰度评价的准确性,利用带动量和加速度的爬山法降低了对焦过程中的不稳定性,减少了粗对焦过程所需的步数。算法在实际中波红外望远镜系统中得到应用,实验结果表明,该算法在粗对焦阶段所需的对焦步数比传统爬山法减少了12.8%,满足红外望远镜系统的需要。
    Abstract: In long-range target detection and tracking, image clarity plays a critical role. An infrared telescope system has a long imaging distance and a short depth of field, and the image blur caused by defocusing tends to be more severe in this system. In addition, because of the atmospheric refraction, the image derived from the telescope constantly changes. This results in a low focusing success rate and low efficiency in traditional focusing algorithms. To improve both the success rate and speed of autofocus, a mountain climbing algorithmic method with a variable step size was proposed in this study. Image clarity was obtained several times, and its median was calculated to ensure image clarity accuracy. Using the mountain climbing algorithm with momentum and acceleration reduces focusing instability as well as the number of steps required for the coarse focusing process. The algorithm was applied in an actual medium-wave infrared telescope system. Experimental results revealed that the focusing steps required by the algorithm for the coarse focusing stage were reduced by 12.8%, in comparison with the traditional mountain climbing method, meeting the requirements of an infrared telescope system.
  • 图  1   实际红外望远镜系统

    Figure  1.   Real infrared telescope system

    图  2   红外望远镜自动对焦系统框图

    Figure  2.   Block diagram of auto focusing system for infrared telescopes

    图  3   在静止平台上不同时刻成像对比

    Figure  3.   Imaging comparison at different times on a stationary platform

    图  4   从离焦-准焦-离焦采集的部分图像序列

    Figure  4.   Partial image sequence acquired from defocus to quasi focus to defocus

    图  5   评价函数对采集的图像向最大值归一化后的评价值

    Figure  5.   The evaluation value of the image normalized to the maximum value by the evaluation function

    图  6   对静止目标连续采集成像的评价值

    Figure  6.   Evaluation values of continuous acquisition imaging for stationary targets

    图  7   对静止目标连续采集成像的评价值取中位数作为最终评价值

    Figure  7.   The median is taken as the final evaluation value for the evaluation value of continuous acquisition and imaging of stationary target

    图  8   Tenengrad评价函数中值滤波后的评价函数图

    Figure  8.   Evaluation function graph after median filtering of Tenengrad evaluation function

    图  9   变步长的爬山法算法流程

    Figure  9.   Flowchart of variable step size mountain climbing method algorithm

    图  10   红外望远镜系统自动对焦前图像

    Figure  10.   Infrared telescope system image before autofocus

    图  11   红外望远镜系统自动对焦后图像

    Figure  11.   Infrared telescope system image after autofocus

    表  1   不同对焦评价函数的实时性

    Table  1   Real time performance of different focusing evaluation functions

    Function Time/ms
    Tenengrad 46.37
    Brener 5.59
    Laplacian 42.68
    Variance 15.55
    Paper[9] 250.9
    Squared 11.64
    Roberts 53.5
    下载: 导出CSV

    表  2   使用对比方法和使用本文提出的变步长自动对焦算法完成对焦所需的步数对比

    Table  2   The comparison of the number of steps needed to complete the focusing between the compared method and using the variable step size autofocus algorithm proposed in this paper

    Number of out-of-focus pulses Steps needed to finish autofocus
    Contrast algorithm Proposed algorithm
    20 30 40 20 30 40
    100 11.3 9.0 9.0 7.0 8.5 8.5
    200 16.3 11.8 12.3 11.3 11.0 12.8
    300 21.3 17.0 15.3 14.0 14.0 14.5
    400 25.7 19.0 18.0 17.8 15.0 15.8
    下载: 导出CSV

    表  3   使用两种算法对焦前后的红外图像清晰度对比(其中Tenengrad数值均为原数值除以1×109后的结果)

    Table  3   The comparison of clarity of the infrared image between the two methods(where all the Tenengrad values were divided by 1×109)

    Number of out-of-focus pulses Tenengrad value before autofocus Tenengrad value after autofocus
    Contrast algorithm Clarity improved Proposed algorithm Clarity improved
    100 7.6771 9.4609 23.24% 9.3857 22.26%
    200 6.7049 9.3238 39.06% 9.3512 39.47%
    300 6.1801 9.6894 56.78% 9.4935 53.61%
    400 5.8859 9.3488 58.83% 9.8968 68.14%
    下载: 导出CSV
  • [1] 李洪宇, 杨帆, 谭文斌, 等. 基于HVS算子的自适应清晰度自动调焦评价函数[J]. 红外技术, 2017, 39(7): 632-637. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201707009.htm

    LI Hongyu, YANG Fan, TAN Wenbin, et al. A Self-adaptive Clarity Auto Focus Evaluation Function Based on HVS Operator[J]. Infrared Technology, 2017, 39(7): 632-637. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201707009.htm

    [2]

    CAO Yongpeng, XIN Chunhui, PAN Qingsong. Study on auto-focusing searching algorithm applied to integrated camera[J]. Journal of Applied Optics, 2018, 39(4): 483-490. http://www.researchgate.net/publication/327689865_Study_on_auto-focusing_searching_algorithm_applied_to_integrated_camera

    [3]

    Erasmus S J, Smith K C A. An automatic focusing and astigmatism correction system for the SEM and CTEM[J]. Journal of Microscopy, 1982, 127(2): 185-199. DOI: 10.1111/j.1365-2818.1982.tb00412.x

    [4] 林兆华, 刘鑫, 王岚, 等. 采用MSP430单片机的自动调焦控制系统在经纬仪上的应用[J]. 电光与控制, 2011, 18(1): 48-52. DOI: 10.3969/j.issn.1671-637X.2011.01.012

    LIN Zhaohua, LIU Xin, WANG Lan, et al. Application of MSP430 in Autofocus System of Theodolite[J]. Electronics Optics & Control, 2011, 18(1): 48-52 DOI: 10.3969/j.issn.1671-637X.2011.01.012

    [5] 王昊, 张涛, 张振, 等. 单幅图像估计离焦量的航空摄像机自动调焦系统[J]. 液晶与显示, 2016, 31(5): 484-490. https://www.cnki.com.cn/Article/CJFDTOTAL-YJYS201605010.htm

    WAHG Hao, ZHANG Tao, ZHANG Zhen, et al. System of aerial camera auto-focus based on defocus estimate by single image[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(5): 484-490. https://www.cnki.com.cn/Article/CJFDTOTAL-YJYS201605010.htm

    [6]

    YU X, YU R, YANG J, et al. A Robotic Auto-Focus System based on Deep Reinforcement Learning[C]//2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), IEEE, 2018: 204-209.

    [7]

    CHEN R, Van Beek P. Improving the accuracy and low-light performance of contrast-based autofocus using supervised machine learning[J]. Pattern Recognition Letters, 2015, 56: 30-37. DOI: 10.1016/j.patrec.2015.01.010

    [8]

    ZHANG Y, LIU L, GONG W, et al. Autofocus system and evaluation methodologies: a literature review[J]. Sens. Mater. , 2018, 30(5): 1165-1174. http://smartsearch.nstl.gov.cn/paper_detail.html?id=972ce9d44629d1ab893e8ac7a2fab1b0

    [9] 王烨茹, 冯华君, 徐之海, 等. 一种覆盖范围可调的变频梯度自动对焦评价函数[J]. 红外与激光工程, 2016, 45(10): 266-271. DOI: 10.3788/IRLA201645.1028001

    WANG Yeru, FENG Huajun, XU Zhihai, et al. An adjustable coverage range autofocus evaluation function using gradient operator with variable frequency[J]. Infrared and Laser Engineering, 2016, 45(10): 266-271. doi: 10.3788/IRLA201645.1028001.

    [10] 栗洋洋, 刘琳, 彭晴晴, 等. 卡塞格林系统的杂散辐射分析[J]. 激光与红外, 2019, 49(8): 987-991. DOI: 10.3969/j.issn.1001-5078.2019.08.014

    LI Yangyang, LIU Lin, PENG Qingqing, et al. Stray radiation analysis of Cassegra in system[J]. LASER & INFRARED, 2019, 49(8): 987-991. DOI: 10.3969/j.issn.1001-5078.2019.08.014

    [11]

    SHA X, LI W, LV X, et al. Research on auto-focusing technology for micro vision system[J]. Optik, 2017, 142: 226-233. DOI: 10.1016/j.ijleo.2017.06.001

  • 期刊类型引用(5)

    1. 王维林,郭一新,金伟其,裘溯,何玉青,郭宗昱,杨书宁. 日盲紫外拉曼光谱遥测系统及其检测实验. 光谱学与光谱分析. 2025(03): 706-711 . 百度学术
    2. 郭一新,王维林,金伟其,何玉青,郭宗昱,裘溯. 日盲紫外拉曼光谱检测及其处理算法研究进展. 激光与光电子学进展. 2025(01): 58-72 . 百度学术
    3. 段鹏威,阮伟东,韩晓霞,赵冰,孔景临. 表面增强拉曼散射光谱技术检测毒害物质研究进展. 防化研究. 2025(01): 14-21 . 百度学术
    4. 徐涛,俞露,李易,齐俊文,李健生,陆锐. 聚酰胺/银纺丝SERS基底的制备与应用研究. 南京理工大学学报. 2024(03): 390-396 . 百度学术
    5. 邓金睿,姜瑞景,钟海,张皓翔,崔柳华,蔡磊. 氢气泄漏拉曼激光雷达遥测技术研究进展. 激光与光电子学进展. 2023(22): 51-66 . 百度学术

    其他类型引用(1)

图(11)  /  表(3)
计量
  • 文章访问数:  444
  • HTML全文浏览量:  194
  • PDF下载量:  87
  • 被引次数: 6
出版历程
  • 收稿日期:  2020-03-20
  • 修回日期:  2020-12-29
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回
    x 关闭 永久关闭

    尊敬的专家、作者、读者:

    端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

    感谢您对本刊的支持!

    《红外技术》编辑部

    2024年6月6日