InAs/GaSb超晶格和M结构超晶格能带结构研究

李俊斌, 刘爱民, 蒋志, 孔金丞, 李东升, 李艳辉, 周旭昌, 杨雯

李俊斌, 刘爱民, 蒋志, 孔金丞, 李东升, 李艳辉, 周旭昌, 杨雯. InAs/GaSb超晶格和M结构超晶格能带结构研究[J]. 红外技术, 2021, 43(7): 622-628.
引用本文: 李俊斌, 刘爱民, 蒋志, 孔金丞, 李东升, 李艳辉, 周旭昌, 杨雯. InAs/GaSb超晶格和M结构超晶格能带结构研究[J]. 红外技术, 2021, 43(7): 622-628.
LI Junbin, LIU Aiming, JIANG Zhi, KONG Jincheng, LI Dongsheng, LI Yanhui, ZHOU Xuchang, YANG Wen. Investigation of Energy Band Structures of InAs/GaSb and M Structure Superlattices[J]. Infrared Technology , 2021, 43(7): 622-628.
Citation: LI Junbin, LIU Aiming, JIANG Zhi, KONG Jincheng, LI Dongsheng, LI Yanhui, ZHOU Xuchang, YANG Wen. Investigation of Energy Band Structures of InAs/GaSb and M Structure Superlattices[J]. Infrared Technology , 2021, 43(7): 622-628.

InAs/GaSb超晶格和M结构超晶格能带结构研究

详细信息
    作者简介:

    李俊斌(1989-),男,云南昌宁人,博士,工程师,主要从事红外光电材料与器件方面的研究工作。E-mail:junbin_lee666@163.com

    通讯作者:

    孔金丞(1979-),男,云南南华人,博士,研究员,主要从事红外材料与器件研究。E-mail:kongjincheng@163.com

  • 中图分类号: TN213

Investigation of Energy Band Structures of InAs/GaSb and M Structure Superlattices

  • 摘要: 本文通过k·p方法研究了传统InAs/GaSb超晶格和M结构超晶格的能带结构。首先,计算了不同周期厚度的InAs/GaSb超晶格的能带结构,得到用于长波超晶格探测器吸收层的周期结构。然后,计算了用于超晶格长波探测器结构的M结构超晶格的能带结构,并给出长波InAs/GaSb超晶格与M结构超晶格之间的带阶。最后,基于能带结构,计算出长波超晶格与M结构超晶格的态密度,进而得出的载流子浓度(掺杂浓度)与费米能级的关系。这些材料参数可以为超晶格探测器结构设计提供基础。
    Abstract: In this study, the band structures of conventional InAs/GaSb and M structure super lattices are investigated using the k·p method. First, the band structures of InAs/GaSb super lattices with various period thickness are calculated, and the period structure used for a longwave super lattice detector is obtained. Subsequently, the band structure of the M structure super lattice, which is prevalently employed in longwave super lattice infrared detectors, is also calculated. The band offset between a longwave InAs/GaSb super lattice and M structure super lattice is provided. Furthermore, based on the band structures, the relationship between the carrier density (doping density) and the position of the Fermi level for longwave InAs/GaSb and M structure super lattices is obtained. This was followed by a density of states (DOS) calculation. These calculated material parameters can provide the foundation for designing super lattice infrared detectors.
  • 图  1   InAs/GaSb超晶格带隙随InAs层厚度的关系

    Figure  1.   Variation of band gap of InAs/GaSb superlattice with respect to InAs layer thickness.

    图  2   7 MLs GaSb/ 1 ML InSb/ 14 MLs InAs/ 1 ML InSb能带带阶排列

    Figure  2.   Band edge alignment of 7 MLs GaSb/ 1 ML InSb/ 14 MLs InAs/ 1 ML InSb

    图  3   14 MLs InAs/ 7 MLs GaSb超晶格的能带色散关系,能量原点为GaSb体材料的价带顶

    Figure  3.   Energy band dispersion of 14 MLsInAs/ 7 MLs GaSb superlattice, the energy origin is set as the top of GaSb valence band

    图  4   14 MLs InAs/ 7 MLs GaSb超晶格在单周期内的波函数

    Figure  4.   Wave function of 14 MLs InAs/ 7 MLs GaSb superlattice in unit cell

    图  5   18 MLs InAs / 1 ML InSb/ 3 MLs GaSb / 5 MLs AlSb /3 MLs GaSb/ 1 ML InSb能带带阶排列

    Figure  5.   Band edge alignment of 18 MLs InAs / 1 ML InSb/ 3 MLs GaSb / 5 MLs AlSb / 3 MLs GaSb/ 1 ML InSb

    图  6   18 MLs InAs / 3 MLs GaSb / 5 MLs AlSb / 3 MLs GaSb M结构超晶格的能带色散关系,能量原点为GaSb体材料的价带顶

    Figure  6.   Energy band dispersion of 18 MLs InAs / 3 MLs GaSb / 5 MLs AlSb / 3 MLs GaSb M structure superlattice, the energy origin is set as the top of GaSb valence band

    图  7   14 MLs InAs / 7 MLs GaSb超晶格和18 MLs InAs / 3 MLs GaSb / 5 MLs AlSb / 3 MLs GaSbM结构超晶格的态密度

    Figure  7.   The density of states for 14 MLs InAs / 7 MLs GaSb superlattice and 18 MLs InAs / 3 MLs GaSb / 5 MLs AlSb / 3 MLs GaSb M structure superlattice

    图  8   掺杂浓度与费米能级位置之间的关系

    Figure  8.   The relationship between doping density and Fermi energy level

    表  1   14 MLs InAs/ 7 MLs GaSb超晶格和18 MLs InAs/ 3 MLs GaSb/ 5 MLs AlSb/ 3 MLs M结构超晶格的关键能带参数

    Table  1   Critical energy band parameter of 14 MLs InAs/ 7 MLs GaSb superlattice and 18 MLs InAs/ 3 MLs GaSb/ 5 MLs AlSb/ 3 MLs M structure superlattice

    Structure Effective energy
    gap (Eg)/eV
    Bottom of conduction
    band (Ec)/eV
    Top of valence
    band (Ev)/eV
    ΔEc/meV ΔEv/meV
    14 MLs InAs/ 7 MLs GaSb superlattice 0.1235 0.0701 -0.0534 -- --
    18 MLs InAs/ 3 MLs GaSb/ 5 MLs AlSb/ 3 MLs M structure superlattice 0.2133 0.0612 -0.1521 -8.9 -98.7
    下载: 导出CSV
  • [1]

    Rhiger D R. Performance Comparison of Long-Wavelength InfraredType Ⅱ Superlattice Devices with HgCdTe[J]. J. Electron Mater. , 2011, 40: 1815. DOI: 10.1007/s11664-011-1653-6

    [2]

    Sai Halasz G A, Tsu R, Esaki L. A new semiconductor superlattice[J]. Appl. Phys. Lett. , 1977, 30: 651. DOI: 10.1063/1.89273

    [3]

    Smith D L, Mailhiot C. Proposal for strained type Ⅱ superlattice infrared detectors[J]. J. Appl. Phys. , 1987, 62: 2545. DOI: 10.1063/1.339468

    [4]

    Youngsdale E R, Meyer J R, Hoffman C A, et al. Auger lifetime enhancement in InAs-Ga1-xInxSb superlattices[J]. Appl. Phys. Lett. , 1994, 64: 3162. DOI: 10.1063/1.111325

    [5]

    Rogalski A, Martyniuk P, Kopytko M. InAs/GaSb type-Ⅱ superlattice infrared detectors: Future prospect[J]. Appl. Phys. Rev. , 2017(4): 031304. http://adsabs.harvard.edu/abs/2017ApPRv...4c1304R

    [6]

    Nguyen B M, Hoffman D, Delaunay PY, et al. Dark current suppression in type Ⅱ InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier[J]. Appl. Phys. Lett. , 2007, 91: 163511. DOI: 10.1063/1.2800808

    [7]

    Gunapala S D, Ting D Z, Hill C J, et al. Demonstration of a 1024×1024 Pixel InAs-GaSb Superlattice Focal Plane Array[J]. IEEE Photon. Technol. Lett. , 2010, 22: 1856. DOI: 10.1109/LPT.2010.2089677

    [8]

    Klipstein P C, Avnon E, Benny Y, et al. InAs/GaSb Type Ⅱ superlattice barrier devices with a low dark current and a high quantum efficiency[C]//Proc. of SPIE, 2014, 9070: 90700U.

    [9]

    Vurgaftman I, Aifer E H, Canedy C L, et al. Graded band gap for dark-current suppression in long-wave infrared W-structured type-Ⅱ superlattice photodiodes[J]. Appl. Phys. Lett. , 2006, 89: 121114. DOI: 10.1063/1.2356697

    [10]

    XU W, LI L L, DONG H M, et al. Band hybridization and spin-splitting in InAs/AlSb/GaSb type Ⅱ and broken-gap quantum wells[J]. J. Appl. Phys. , 2010, 108: 053709. DOI: 10.1063/1.3476059

    [11]

    CHUANGS L. Physics of Photonic Devices[M]. New York: Wiley, 2nd ed. 2009.

    [12]

    Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for Ⅲ–V compound semiconductors and their alloys[J]. J. Appl. Phys., 2001, 89: 5815. DOI: 10.1063/1.1368156

    [13]

    Shun Lien Chuang. Efficient band-structure calculations of strained quantum wells[J]. Phys. Rev. B, 1991, 43: 9649. DOI: 10.1103/PhysRevB.43.9649

    [14]

    Nakamura K, Shimizu A, Koshiba M, et al. Finite-element analysis of the miniband structures of semiconductor superlattices with arbitrary periodic potential profiles[J]. IEEE J. Quantum Electron., 1991, 27: 2053. http://ieeexplore.ieee.org/document/83413

    [15]

    Chuang S L, Chang C S. A band-structure model of strained quantum-well wurtzite semiconductors[J]. Semicond. Sci. Technol. , 1997, 12: 252. DOI: 10.1088/0268-1242/12/3/004

    [16]

    Davies J H. The Physics of Low-Dimensional Semiconductors: An Introduction[M]. Cambridge: Cambridge University Press, 2005.

    [17]

    Frank Fuchs, N Herres, J Schmitz, et al. InAs/GaSb superlattices characterized by high-resolution x-ray diffraction and infrared optical spectroscopy[C]//Proc. of SPIE, 1996, 70: 2554.

  • 期刊类型引用(0)

    其他类型引用(1)

图(8)  /  表(1)
计量
  • 文章访问数:  461
  • HTML全文浏览量:  298
  • PDF下载量:  145
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-04-19
  • 修回日期:  2021-05-24
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回
    x 关闭 永久关闭

    尊敬的专家、作者、读者:

    端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

    感谢您对本刊的支持!

    《红外技术》编辑部

    2024年6月6日