Calibration Between Sparse LIDAR and Visible/Infrared Imaging Systems
-
摘要: 激光雷达与成像系统之间的位姿标定是激光点云与图像像素进行融合的前提。目前主流的离线标定方法中,普通棋盘格标定板用于64线及以上的激光雷达时效果较好,而用于16线激光雷达时由于其数据稀疏而导致误差较大。而且,涉及红外成像系统的标定时,需要特制的棋盘格来获得发射率差异。本文针对稀疏激光雷达点云数据较少的问题,研究了可以同时标定激光雷达与可见光、红外成像系统的方法,设计了菱形九孔标定板,并提出几何约束损失函数来优化特征点的坐标。最后,分别使用红外和可见光成像系统与16线激光雷达进行标定,实验结果表明,平均重投影误差均在3个像素之内,取得了较好的效果。本文方法还能用于稀疏激光雷达与可见光-红外多波段成像系统的标定。Abstract: Pose estimation between LIDAR and imaging system is the prerequisite for the data fusion. Among current mainstream off-line calibration methods, common checkerboard is generally effective for 64-line and above LIDAR, but not for 16-line LIDAR due to its sparse data and will lead to large error. Furthermore, when involving calibration of infrared imaging system, specially-made checkerboard is needed to produce difference of emissivity. Aiming at the problem of less information provided by sparse LIDARs, we propose a new calibration method that can jointly calibrate LIDAR and visible/infrared imaging systems. A novel diamond-shaped nine-hole calibration board is designed, and a geometric constraint loss function is proposed to optimize the coordinates of feature points. Finally, the infrared and visible light imaging systems are used respectively, to calibrate with 16-line LIDAR. Good results are achieved and show that, all the average reprojection error is within 3 pixels. The proposed method can also be used in calibration of multi-band imaging systems that include sparse LIDAR, visible imaging system and infrared imaging system.
-
Keywords:
- sparse LIDAR /
- pose estimation /
- calibration /
- calibration board /
- infrared imaging
-
0. 引言
微型发光二极管(micro light emitting device,Micro-LED)作为一种自发光显示器件,具有高亮度、高集成度、长寿命和低功耗等优点,较传统液晶显示(liquid crystal display,LCD)和有机发光二极管(organic light-emitting device,OLED)显示技术,Micro-LED在显示效果、能耗以及使用寿命等方面拥有显著的优势,被认为是最具潜力的新一代显示技术[1-4]。Micro-LED微型显示器像素尺寸小于10 μm,能够实现更高的分辨率和对比度,提供更清晰、细腻的画质体验,有助于构建更为紧凑高效的显示系统,在可穿戴设备、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)、微型投影仪、3D打印、汽车抬头显示以及可见光通讯等众多领域具有广泛的应用前景[5-11]。
随着技术的持续革新和市场的逐渐成熟,Micro-LED微型显示器技术研究和产业正展现出迅猛发展的势头。美国德州理工大学Hongxing Jiang团队2012年制备10×10阵列的Micro-LED器件,并实现其显示功能[12]。香港科技大学Keimay Lau团队2012年开发了360PPI的Micro LED显示原型机,并于2014年将显示器分辨率提升至1700PPI[13]。美国德克萨斯科学技术大学Day等人研制出超高分辨率的Micro-LED阵列,该器件由640×480个像素组成,Micro-LED阵列的台面尺寸为12 μm,像素间隔为3 μm[14]。然而,尽管前景广阔,Micro-LED微型显示技术的商业化和产业化道路仍充满挑战。技术难题、生产成本、市场接受度等问题,都亟待行业内外共同努力,以期实现显著的产业化突破[15-17]。本文基于云南北方奥雷德光电科技股份有限公司自主开发的WVGA041硅基IC驱动电路,将LED微显示芯片与IC电路进行互连,制备出了高亮单色绿光Micro-LED微型显示器件,显示器像素尺寸11.1 μm×11.1 μm,像素阵列800×480,并对器件性能进行了相应表征及研究。
1. 微型显示器件驱动及像素结构
1.1 微型显示驱动电路
像素驱动单元电路如图 1所示。LED采用电压驱动方式,视频信号Video_In在扫描信号ROWSEL和ROWSEL_B同时有效后,经P1、N1向储能电容C充电,同时控制N2的输出。储能电容C可保证在一帧/场周期内维持N2的输出。N2采用源极跟随器结构,控制5 V电源(Van)施加到阳极的电压。所有像素点的阴极连接到负电压Vcom,Vcom可通过寄存器进行调节,从而实现整个显示屏的亮度调整。N3用于对器件寄生电容实现快速放电,可在每次刷新数据前将残余电荷彻底放净,从而保证每次刷新的有效充电和显示。N3的放电设置可通过寄存器进行控制。
WVGA041系列产品的硅基板采用0.18 μm CMOS工艺制造,集成了全数字视频信号处理及804×3×484个驱动单元等电路。系统功能结构如图 2所示,其核心组成部分主要由数字视频信号接口、数字视频信号处理、测试图案发生器、数字伽马校正、灰度映射、D/A转换、行列扫描、像素驱动阵列、两线串行通信接口、3线SPI接口、可编程控制逻辑单元、温度传感器、DC/DC转换等功能模块组成。
数字视频信号接口具有3个8位数据通道,可接受8/16/24位的RGB或YCbCr视频信号。内部解码器根据不同的视频输入格式解码输出24位RGB信号;数字视频信号处理电路接收24位RGB信号后,对视频信号的亮度、对比度分别进行调整,并保持24位RGB信号输出;伽马校正电路对24位RGB信号进行查表校正后,扩展至30位RGB信号输出;灰度映射电路通过D/A转换,将30位RGB数字信号转换为三路模拟RGB亮度电平信号,再通过行列驱动扫描电路按扫描时序依次注入到各亚像素点驱动单元储存;驱动单元电路将RGB亮度电平信号施加到LED发光二极管阳极,并维持一帧/场周期时间。DC/DC模块通过外部提供的电源和PCB背板的外围元件,产生一个负电压(Vcom)施加到全部LED像素发光二极管的公共阴极,配合前述阳极亮度电平信号,使各LED像素在一帧/场的周期时间内持续发光。
1.2 微型显示芯片LED像素设计
自主研发的Micro-LED微型显示器采用倒装焊接工艺,将基于商用氮化镓LED外延制备的LED微显示芯片与公司自有白光OLED微型显示器驱动IC进行倒装焊互连。IC上的驱动像素单元按垂直列条状排列(如图 3所示),在OLED器件中,每个白光像素点由红、绿、蓝三个亚像素点构成。亚像素尺寸为2.8 μm×11.1 μm,间距0.9 μm。在LED器件中,在IC驱动像素上通过蒸镀金属将3个亚像素连接在一起,3个像素均传导相同电信号。发光像素尺寸为11.1 μm×11.1 μm,有效像素为800×480。每个像素的尺寸、发光面积与显示面积的占空比、显示区域尺寸如表 1所示。
表 1 显示器相关信息列表Table 1. Related parameters of the display diodePixel size Duty cycle Display area size Width(W)/μm Height(H)/ μm 69.50% Width(W)/mm Height(H)/mm 11.1 11.1 8.92 5.37 2. 器件制备
器件制备借助MEMS工艺平台,综合CMOS电路结构及工艺需求,使用2 inch绿光蓝宝石衬底GaN基LED外延制备Micro-LED显示芯片。主要工艺流程如图 4所示,首先对LED外延片进行P面金属光刻工艺,蒸镀P面金属,并将冗余金属区域通过剥离工艺,制备P型欧姆接触电极;之后进行光刻,制备像素阵列,使用ICP干法刻蚀设备定义出显示像素阵列;然后沉积二氧化硅薄膜作为显示像素侧壁钝化层,并进行钝化层光刻,使用ICP设备对P型接触电极上方的钝化膜刻蚀掉,打开欧姆接触孔;然后,进行N面金属光刻工艺,蒸镀N型欧姆接触电极,形成共阴极。
Micro-LED显示芯片工艺完成后,使用刀轮对2 inch片切割,分立成具备完整显示功能的0.41 inch小片。之后,使用倒装焊接设备,将Micro-LED显示芯片与驱动电路键合到一起。最后,采用打线封装工艺,将倒焊好的器件与PCB电路板贴片连接。器件的亮度及光谱由PR-655光度计测量,电流和电压通过Keithley2400测试仪所组成的测试系统测量,外量子效率由远方光电PCE-2000B积分球测量。
3. 结果和讨论
图 5为Micro-LED芯片像素阵列扫描电子显微镜(scanning electron microscope,SEM)图,由图可知,像素为正方形,像素尺寸为11.1 μm×11.1 μm,相邻两像素间距为0.9 μm,与实验设计一致,分辨率为800×480。
在实验中,由于采用的驱动IC专为OLED微型显示器设计,其输出电流较低,尽管足够点亮氮化镓基Micro-LED器件,但未能完全展现Micro-LED在大电流工作状态下所能达到的高亮度效果。为了更好地评估器件的性能,我们采用两点测试法,在CMOS驱动的N2衬底(如图 1所示)施加正向电压,Vcom端接地,通过外接电源替代驱动IC供电,模拟大电流驱动环境点亮整个显示屏,以获取该显示屏在大电流驱动下的测试数据,从而更深入地研究其光电特性。
图 6为器件的电流-电压-亮度特性曲线。如图 6(a)所示,启亮电压仅为2.8 V,低启亮电压意味着器件具备更短的响应时间,这一特性对于需要高刷新率的应用场景尤为重要。此外,低启亮电压还有助于提升器件的稳定性和延长其使用寿命。如图(b)所示电压为4 V时,电流162 mA,器件亮度为42855 cd/m2,电压为5.0 V,电流294 mA,亮度为108000 cd/m2。电压为7.5 V,电流607 mA,亮度为251000 cd/m2。有研究显示,OLED微型显示器在3.4 V驱动电压下,器件发光亮度为10000 cd/m2左右[18]。与OLED相比,该显示屏拥有极高的亮度,这得益于其单个LED的高效能转换,使得在明亮环境中仍能保持出色的可视性。
图 7为器件色坐标随电流密度的变化曲线,可以看出,电流密度从0.3 A/cm2增加到1.3 A/cm2时,色坐标从(0.178, 0.757)变化到(0.175, 0.746),CIE-X坐标变化范围0.171~0.179,变化幅度小于0.010,CIE-Y坐标变化范围0.745~0.758,变化幅度小于0.015。随着电流密度的提高,器件的CIE-X和CIE-Y值呈现出相对稳定的变化趋势,这对于高亮显示应用十分重要。
图 8展示了器件在不同电流下的电致发光(EL)光谱。其中图 8(a)为原始光谱图。可以看出,随着电流的增加,光强呈现出显著的增强趋势。图 8(b)为图 8(a)的归一化光谱图,可以看出,尽管电流变化,但器件的峰值波长稳定在524 nm,且半峰宽为28 nm,呈现出较为集中的发光特性。将其峰值部分放大,其结果展示在图 8(b)的插图中,波峰的位置在电流变化的过程中几乎保持不变,这表明器件在发光过程中具有出色的稳定性,即使在电流变化的情况下,光谱也并未发生明显的偏移,体现了器件优良的光电性能和可靠的发光机制。
图 9展示了器件的外量子效率(external quantum efficiency,EQE)随电流密度的变化曲线,EQE值随电流密度增大,先增后减。在电流密度较低时,随着电流的增加,载流子填充缺陷,SRH复合得到抑制,EQE值上升。当电流密度攀升到1.67 A/cm2左右,EQE达到最高点,之后电流增大,EQE值下降。这是因为大电流注入下,载流子泄露造成的俄歇复合加剧,影响了器件效率。此外,大电流下的热效应同样会加剧EQE下降,限制了光电转换效率的进一步提升。
通过倒装焊工艺,成功开发了绿光Micro-LED微型显示器件,实现了驱动芯片对单个LED的独立控制,并能完成视频信号输入后的画面显示(如图 10),并具备亮度、对比度、伽马校正等功能的控制和调整。
4. 总结
制备了一款0.41 inch、分辨率为800×480的氮化镓基单色绿光Micro-LED微型显示器,利用高精度焊技术实现CMOS驱动电路与LED发光芯片的电气连接,实现了视频画面显示,并研究其光电特性。实验结果表明,在CMOS电路驱动范围内,器件最大亮度可达250000 cd/m2,其启亮电压2.8 V,能够满足高亮度的应用需求。电流密度从0.3 A/cm2增加到1.3 A/cm2时,色坐标从(0.178,0.757)变化到(0.175, 0.746),区间内CIE-X坐标变化范围0.171~0.179,CIE-Y坐标变化范围0.745~0.758,器件的色稳定性能够满足实际应用要求。制备的单色绿光micro-LED微型显示器具备高亮度、低启亮电压和良好色稳定性等特性,为虚拟现实(VR)、增强现实(AR)、可穿戴设备、智能眼镜、医疗影像和军事领域等提供了理想的显示解决方案,研究的成果具有显著的优势和广阔的应用前景。
-
表 1 两种方法初值误差对比
Table 1 Comparison of initial value errors of two methods
3D Constraint Method (a) PnP Method (b) Number Rotary axis error(a) Angular error (a) Translation error (a) Rotary axis error(b) Angular error (b) Translation error (b) 1 6.0×10−5 5×10−5 2.3×10−5 0.890 0.165 0.376 2 6.4×10−6 8×10−5 3.1×10−5 0.593 0.067 0.434 3 2.9×10−5 8×10−5 5.3×10−5 0.283 0.038 0.387 4 6.1×10−5 3×10−5 4.9×10−5 0.733 0.048 0.218 5 5.7×10−5 8×10−5 7.7×10−5 0.710 0.070 0.520 6 3.4×10−5 1×10−4 7.2×10−5 0.904 0.022 0.615 7 5.9×10−5 7×10−5 5.5×10−5 0.278 0.036 0.497 8 3.9×10−5 3×10−5 3.9×10−5 0.820 0.021 0.581 9 5.3×10−5 9×10−6 2.9×10−5 0.718 0.027 0.480 Average 4.4×10−5 6×10−6 4.7×10−5 0.658 0.054 0.456 表 2 本文方法的仿真结果
Table 2 The simulation results of our method
Number Lidar loss
before optimizationLidar loss
after optimizationCamera loss
before optimizationCamera loss
after optimizationRotary axis error Angular error Translation error 1 4.9377 0.0147 4.3755 0.0010 5.9×10−3 0.0025 3.6×10−3 2 4.6482 0.0333 4.6580 0.0030 4.2×10−3 0.0001 6.9×10−3 3 4.1757 0.0054 4.2307 0.0052 5.310−3 0.0003 5.8×10−3 4 4.4703 0.0009 4.6283 0.0034 4.3×10−3 0.0046 8.9×10−3 5 4.7989 0.0010 4.4958 0.0011 7.1×10−3 0.0082 79×10−3 6 4.8751 0.0054 4.1330 0.0018 7.1×10−3 0.0162 6.9×10−3 7 4.2961 0.0035 4.4130 0.0095 8.4×10−3 0.0224 5.1×10−3 8 4.4903 0.0013 4.4346 0.0073 8.9×10−3 0.0043 1.1×10−2 9 4.4642 0.0018 4.5932 0.0153 7.3×10−3 0.0142 9.9×10−3 Average 4.5729 0.0075 4.4402 0.0053 6.5×10−3 0.0081 7.3×10−3 表 3 可见光系统实验结果
Table 3 Experimental results of visible imaging system
No. Rotation matrix Rlc (c) Translation vector tlc(c) Reprojection error (c)/pixel Rotation matrix Rlc(d) Translation vector tlc(d) Reprojection error (d)/pixel 1 $ \left[ {\begin{array}{*{20}{c}} {0.9905}&{ - 0.1364}&{ - 0.0192} \\ { - 0.0138}&{0.0403}&{ - 0.9991} \\ {0.1371}&{0.9898}&{0.0381} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} { - 0.0172} \\ {0.0660} \\ {0.0116} \end{array}} \right] $ $ \begin{array}{*{20}{c}} {x:4.7595} \\ {y:2.7523} \end{array} $ $ \left[ {\begin{array}{*{20}{c}} {0.9882}&{ - 0.1524}&{ - 0.0156} \\ { - 0.0132}&{0.0166}&{ - 0.9998} \\ {0.1526}&{0.9882}&{0.0144} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} { - 0.0172} \\ {0.0660} \\ {0.0116} \end{array}} \right] $ $ \begin{array}{*{20}{c}} {x:2.3598} \\ {y:2.0767} \end{array} $ 2 $ \left[ {\begin{array}{*{20}{c}} {0.9906}&{ - 0.1358}&{ - 0.0111} \\ { - 0.0104}&{0.0063}&{ - 0.9999} \\ {0.1359}&{0.9907}&{0.0049} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} { - 0.0165} \\ {0.0188} \\ {0.0200} \end{array}} \right] $ $ \begin{array}{*{20}{c}} {x:3.5315} \\ {y:5.4321} \end{array} $ $ \left[ {\begin{array}{*{20}{c}} {0.9859}&{ - 0.1661}&{ - 0.0205} \\ { - 0.0149}&{0.0350}&{ - 0.9993} \\ {0.1667}&{0.9855}&{0.0320} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} { - 0.0165} \\ {0.0188} \\ {0.0200} \end{array}} \right] $ $ \begin{array}{*{20}{c}} {x:2.6225} \\ {y:2.0955} \end{array} $ 3 $ \left[ {\begin{array}{*{20}{c}} {0.9924}&{ - 0.1224}&{ - 0.0114} \\ { - 0.0100}&{0.0119}&{ - 0.9998} \\ {0.1225}&{0.9924}&{0.0106} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} { - 0.0233} \\ {0.0664} \\ {0.0262} \end{array}} \right] $ $ \begin{array}{*{20}{c}} {x:3.2698} \\ {y:4.5639} \end{array} $ $ \left[ {\begin{array}{*{20}{c}} {0.9883}&{ - 0.1513}&{ - 0.0204} \\ { - 0.0179}&{0.0176}&{ - 0.9997} \\ {0.1516}&{0.9883}&{0.0147} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} { - 0.0233} \\ {0.0663} \\ {0.0262} \end{array}} \right] $ $ \begin{array}{*{20}{c}} {x:2.2155} \\ {y:2.0061} \end{array} $ 4 $ \left[ {\begin{array}{*{20}{c}} {0.9904}&{ - 0.1377}&{ - 0.0141} \\ { - 0.0115}&{0.0199}&{ - 0.9997} \\ {0.1379}&{0.9903}&{0.0182} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} { - 0.0219} \\ {0.0636} \\ {0.0244} \end{array}} \right] $ $ \begin{array}{*{20}{c}} {x:3.0629} \\ {y:4.1338} \end{array} $ $ \left[ {\begin{array}{*{20}{c}} {0.9883}&{ - 0.1512}&{ - 0.0176} \\ { - 0.0151}&{0.0183}&{ - 0.9997} \\ {0.1515}&{0.9883}&{0.0158} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} { - 0.0219} \\ {0.0635} \\ {0.0244} \end{array}} \right] $ $ \begin{array}{*{20}{c}} {x:2.0246} \\ {y:1.9887} \end{array} $ 5 $ \left[ {\begin{array}{*{20}{c}} {0.9905}&{ - 0.1374}&{ - 0.0092} \\ { - 0.0104}&{0.0079}&{ - 0.9999} \\ {0.1373}&{0.9905}&{0.0093} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} { - 0.0130} \\ {0.0569} \\ {0.0258} \end{array}} \right] $ $ \begin{array}{*{20}{c}} {x:3.4974} \\ {y:4.9327} \end{array} $ $ \left[ {\begin{array}{*{20}{c}} {0.9881}&{ - 0.1537}&{ - 0.0057} \\ { - 0.0027}&{0.0195}&{ - 0.9998} \\ {0.1538}&{0.9879}&{0.0189} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} { - 0.0130} \\ {0.0569} \\ {0.0257} \end{array}} \right] $ $ \begin{array}{*{20}{c}} {x:2.3178} \\ {y:2.0198} \end{array} $ Average reprojection error $ \begin{array}{*{20}{c}} {x:3.6242} \\ {y:4.3629} \end{array} $ Average reprojection error $ \begin{array}{*{20}{c}} {x:2.3080} \\ {y:2.0374} \end{array} $ 表 4 红外系统实验结果
Table 4 Experimental results of infrared imaging system
No. Rotation matrix Rlc (c) Translation vector tlc (c) Reprojection error (c)/pixel Rotation matrix Rlc (d) Translation vector tlc(d) Reprojection error (d)/pixel 1 $ \left[ {\begin{array}{*{20}{c}} {0.6866}&{0.7269}&{0.0072} \\ {0.0169}&{ - 0.0060}&{ - 0.9998} \\ { - 0.7268}&{0.6866}&{ - 0.0164} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} { - 0.0395} \\ {0.0140} \\ {0.0235} \end{array}} \right] $ $ \begin{array}{*{20}{c}} {x:3.0472} \\ {y:3.0035} \end{array} $ $ \left[ {\begin{array}{*{20}{c}} {0.6358}&{0.7717}&{0.0134} \\ {0.1654}&{ - 0.1193}&{ - 0.9789} \\ { - 0.7539}&{0.6247}&{ - 0.2034} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} { - 0.0395} \\ {0.0140} \\ {0.0235} \end{array}} \right] $ $ \begin{array}{*{20}{c}} {x:2.4367} \\ {y:2.1505} \end{array} $ 2 $ \left[ {\begin{array}{*{20}{c}} {0.6701}&{0.7339}&{ - 0.0379} \\ {0.0534}&{0.0342}&{ - 0.9979} \\ { - 0.0503}&{ - 0.0796}&{ - 1.0010} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} { - 0.2037} \\ { - 0.3452} \\ { - 0.0601} \end{array}} \right] $ $ \begin{array}{*{20}{c}} {x:3.5839} \\ {y:4.3602} \end{array} $ $ \left[ {\begin{array}{*{20}{c}} {0.6327}&{0.7743}&{0.0100} \\ {0.1600}&{ - 0.1181}&{ - 0.9800} \\ { - 0.7577}&{0.6216}&{ - 0.1986} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} { - 0.0486} \\ {0.0016} \\ {0.0297} \end{array}} \right] $ $ \begin{array}{*{20}{c}} {x:2.6007} \\ {y:2.2385} \end{array} $ 3 $ \left[ {\begin{array}{*{20}{c}} {0.6765}&{0.7363}&{0.0092} \\ {0.0168}&{ - 0.0029}&{ - 0.9998} \\ { - 0.7362}&{0.6766}&{ - 0.0143} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} { - 0.0803} \\ { - 0.0819} \\ {0.0745} \end{array}} \right] $ $ \begin{array}{*{20}{c}} {x:3.3312} \\ {y:3.3278} \end{array} $ $ \left[ {\begin{array}{*{20}{c}} {0.6229}&{0.7822}&{0.0100} \\ {0.1317}&{ - 0.0922}&{ - 0.9870} \\ { - 0.7711}&{0.6161}&{ - 0.1604} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} { - 0.0803} \\ { - 0.0819} \\ {0.0745} \end{array}} \right] $ $ \begin{array}{*{20}{c}} {x:2.8646} \\ {y:2.1971} \end{array} $ 4 $ \left[ {\begin{array}{*{20}{c}} {0.6776}&{0.7354}&{0.0112} \\ {0.0343}&{ - 0.0163}&{ - 0.9992} \\ { - 0.7346}&{0.6775}&{ - 0.0363} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} { - 0.2447} \\ { - 0.0381} \\ {0.0815} \end{array}} \right] $ $ \begin{array}{*{20}{c}} {x:3.2049} \\ {y:3.1438} \end{array} $ $ \left[ {\begin{array}{*{20}{c}} {0.5524}&{0.8332}&{0.0249} \\ {0.1678}&{ - 0.0819}&{ - 0.9824} \\ { - 0.8165}&{0.5469}&{ - 0.1851} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} { - 0.2447} \\ { - 0.0381} \\ {0.0815} \end{array}} \right] $ $ \begin{array}{*{20}{c}} {x:2.4126} \\ {y:2.3031} \end{array} $ 5 $ \left[ {\begin{array}{*{20}{c}} {0.6686}&{0.7436}&{0.0077} \\ { - 0.0017}&{0.0118}&{ - 0.9999} \\ { - 0.7436}&{0.6685}&{0.0092} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} { - 0.0673} \\ {0.0042} \\ {0.0303} \end{array}} \right] $ $ \begin{array}{*{20}{c}} {x:3.0379} \\ {y:3.7253} \end{array} $ $ \left[ {\begin{array}{*{20}{c}} {0.6255}&{0.7802}&{0.0075} \\ {0.1605}&{ - 0.1192}&{ - 0.9798} \\ { - 0.7635}&{0.6141}&{ - 0.1998} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} { - 0.0673} \\ {0.0042} \\ {0.0303} \end{array}} \right] $ $ \begin{array}{*{20}{c}} {x:2.6443} \\ {y:2.1625} \end{array} $ Average reprojection error $ \begin{array}{*{20}{c}} {x:3.2410} \\ {y:3.5121} \end{array} $ Average reprojection error $ \begin{array}{*{20}{c}} {x:2.5918} \\ {y:2.2103} \end{array} $ -
[1] Fremont V, Bonnifait P. Extrinsic calibration between a multi-layer lidar and a camera[C]//International Conference on Multisensor Fusion and Integration for Intelligent Systems of IEEE, 2008: 214-219.
[2] 陈东. 三维激光和单目视觉间的联合标定与数据融合[D]. 大连: 大连理工大学, 2009. CHEN Dong. Calibration and Data Fusion between 3D-Laser Scanner and Monocular Vision[D]. Dalian: Dalian University of Technology, 2009.
[3] ZHOU L, DENG Z. Extrinsic calibration of a camera and a lidar based on decoupling the rotation from the translation[C]//Intelligent Vehicles Symposium of IEEE, 2012: 642-648. .
[4] ZHOU L, LI Z, Kaess M. Automatic extrinsic calibration of a camera and a 3d lidar using line and plane correspondences[C]//International Conference on Intelligent Robots and Systems (IROS)of IEEE, 2018: 5562-5569.
[5] Geiger A, Moosmann F, Car O , et al. Automatic camera and range sensor calibration using a single shot[C]//Proceedings of IEEE International Conference on Robotics and Automation, 2012: 3936-3943.
[6] Horaud R, Dornaika F. Hand-eye calibration[J]. The International Journal of Robotics Research, 1995, 14(3): 195-210.
[7] Ishikawa R, Oishi T, Ikeuchi K. Lidar and camera calibration using motions estimated by sensor fusion odometry[C]//International Conference on Intelligent Robots and Systems(IROS) of IEEE, 2018: 7342-7349.
[8] Schneider N, Piewak F, Stiller C, et al. RegNet: multimodal sensor registration using deep neural networks[C]//Intelligent Vehicles Symposium (IV) of IEEE, 2017: 1803-1810.
[9] Iyer G, Ram R K, Murthy J K, et al. CalibNet: geometrically supervised extrinsic calibration using 3D spatial transformer networks[C]// International Conference on Intelligent Robots and Systems (IROS) of IEEE, 2018: 1110-1117.
[10] ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.