留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小像元10 μm中心距红外焦平面读出电路设计

吴圣娟 姚立斌 李东升 姬玉龙 杨春丽 李红福 罗敏 李敏 许睿涵

吴圣娟, 姚立斌, 李东升, 姬玉龙, 杨春丽, 李红福, 罗敏, 李敏, 许睿涵. 小像元10 μm中心距红外焦平面读出电路设计[J]. 红外技术, 2021, 43(9): 902-909.
引用本文: 吴圣娟, 姚立斌, 李东升, 姬玉龙, 杨春丽, 李红福, 罗敏, 李敏, 许睿涵. 小像元10 μm中心距红外焦平面读出电路设计[J]. 红外技术, 2021, 43(9): 902-909.
WU Shengjuan, YAO Libin, LI Dongsheng, JI Yulong, YANG Chunli, LI Hongfu, LUO Min, LI Min, XU Ruihan. Small Pixel 10 μm Pitch Infrared Focal Plane Array ROIC Design[J]. Infrared Technology , 2021, 43(9): 902-909.
Citation: WU Shengjuan, YAO Libin, LI Dongsheng, JI Yulong, YANG Chunli, LI Hongfu, LUO Min, LI Min, XU Ruihan. Small Pixel 10 μm Pitch Infrared Focal Plane Array ROIC Design[J]. Infrared Technology , 2021, 43(9): 902-909.

小像元10 μm中心距红外焦平面读出电路设计

详细信息
    作者简介:

    吴圣娟(1984-),女,硕士研究生,主要研究方向:红外焦平面探测器读出电路设计。 E-mail:275099355@qq.com

    通讯作者:

    姚立斌(1968-),男,云南石屏人,研究员,博士,博士生导师,主要研究方向为混合信号集成电路设计。 E-mail: libin.yao@ieee.org

  • 中图分类号: TN214

Small Pixel 10 μm Pitch Infrared Focal Plane Array ROIC Design

  • 摘要: 研制出一款小像元10μm中心距红外焦平面探测器CMOS(complementary metal oxide semiconductor)读出电路ROIC(read out integrated circuit)。读出电路设计包括积分后读出(integration then reading,ITR)和积分同时读出(integration while reading,IWR)模式,ITR模式下有2档增益,电荷满阱容量分别为4.3 Me-和1.6 Me-,其他功能包括抗晕、串口功能控制以及全芯片电注入测试功能。读出电路采用0.18μm工艺,电源电压3.3 V,测试结果表现出良好的性能:在77 K条件下,全帧频100 Hz,读出电路噪声小于0.2 mV。本文介绍了该款读出电路设计的基本架构,分析了在小的积分电容下电路抗干扰能力的设计。在测试过程中,发现了盲元拖尾现象,分析了拖尾现象产生的原因,为解决拖尾现象设计了抗晕管栅压产生电路,最后给出了整个电路的测试结果。
  • 图  1  读出电路结构示意图

    Figure  1.  Schematic diagram of readout circuit structure

    图  2  模拟链路设计原理图

    Figure  2.  Schematic diagram of analog design

    图  3  IWR模式像元开关时序图

    Figure  3.  Sequence diagram of IWR mode pixel switch

    图  4  ITR模式像元开关时序图

    Figure  4.  Sequence diagram of ITR mode pixel switch

    图  5  保持电容与开关连接图

    Figure  5.  Connection diagram of holding capacitor and switch

    图  6  像元总线

    Figure  6.  Pixel bus

    图  7  行选开关位置1

    Figure  7.  Location 1 of row selection switch

    图  8  行选开关位置2

    Figure  8.  Location 2 of row selection switch

    图  9  列总线仿真原理图

    Figure  9.  Schematic diagram of column bus simulation

    图  10  馈通效应仿真时序

    Figure  10.  Feed through effect simulation timing

    图  11  亮盲元拖尾现象

    Figure  11.  Bright blind element tailing phenomenon

    图  12  拖尾现象分析

    Figure  12.  Analysis of tailing phenomenon

    图  13  抗晕管栅极电压设计示意图

    Figure  13.  Schematic diagram of antiblooming voltage design

    图  14  抗晕管电压产生电路

    Figure  14.  Antiblooming voltage generation circuit

    图  15  小像元探测器组件成像图

    Figure  15.  Imaging of small pixel detector assembly

    表  1  法国Sofradir公司推出的Daphnis产品信息

    Table  1.   Daphnis product information by Sofradir

    Detector spectral
    response
    3.7-4.8 μm
    FPA operating
    temperature
    Up to 110 K
    ROIC architecture Digital outputs
    Direct injection input circuit
    ROIC functionalities Programmable integration time
    anti-blooming
    Invertrevert
    Bining
    IWR or ITR
    High dynamic range
    Windowing modes 320×4 minimum programmable
    Charge handling
    capacity
    3main
    Gains: 1.1Me-; 2.7Me-; 5.6Me-
    Frame rate Up to 85 Hz full frame rate
    NETD 20 mK(293 K, 70% well fill, 2.7Me-)
    下载: 导出CSV

    表  2  读出电路主要性能参数

    Table  2.   Main performance parameters of readout circuit

    Parameters Typical value
    Array 1024×768
    Pixel pitch 10μm
    Main clock 10 MHz
    Charge capacity Gain1:4.3 Me-
    Gain0:1.6Me-
    Output channel 8
    Output voltage swing 2 V(1-3 V)
    Readout mode ITR/IWR
    下载: 导出CSV

    表  3  沟道电荷注入效应引起的电压变化

    Table  3.   Voltage change caused by channel charge injection effect

    C/fF ΔV/mV
    800 7.925
    400 15.85
    200 31.7
    100 63.4
    50 126.8
    10 634
    下载: 导出CSV

    表  4  列放大器对保持电容影响

    Table  4.   Effect of column amplifier on holding capacitance

    C/fF ΔV/mV ΔV'/mV
    10 629.77 21.75
    40 347.35 8.32
    80 204.18 2.26
    100 165.81 1.91
    400 43.42 0.56
    800 21.88 0.29
    下载: 导出CSV

    表  5  读出电路测试结果

    Table  5.   Read out circuit test result

    IWR/ITR function Normal
    Window mode test Normal
    Serial electrical interface Normal
    Output voltage swing 2 V
    Power dissipation 150 mW
    Output bandwidth 10 MHz
    Frame rate 100 Hz
    Noise 0.2 mV
    下载: 导出CSV
  • [1] 杨超伟, 李东升, 李立华, 等. 小像元碲镉汞红外焦平面探测器的研究进展[J]. 红外技术, 2019, 41(11): 1003-1011. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201911003.htm

    YANG Chaowei, LI Dongsheng, LI Lihua, et al. Review of small-pixel HgCdTe infrared focal plane detector[J]. Infrared Technology, 2019, 41(11): 1003-1011. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201911003.htm
    [2] 李俊斌, 李东升, 杨玉林, 等. 以色列SCD公司的III-Ⅴ族红外探测器研究进展[J]. 红外技术, 2018, 40(10): 936-945. http://hwjs.nvir.cn/article/id/hwjs201810003

    LI Junbin, LI Dongsheng, YANG Yulin, et al. III-V semiconductor infrared detector research in SCD of Israel[J]. Infrared Technology, 2018, 40(10): 936-945. http://hwjs.nvir.cn/article/id/hwjs201810003
    [3] 邓功荣, 赵鹏, 袁俊, 等. 锑基高工作温度红外探测器研究进展[J]. 红外技术, 2017, 39(9): 780-784. http://hwjs.nvir.cn/article/id/hwjs201709002

    DENG Gongrong, ZHAO Peng, YUAN Jun, et al. Status of Sb-based HOT infrared detectors[J]. Infrared Technology, 2017, 39(9): 780-784. http://hwjs.nvir.cn/article/id/hwjs201709002
    [4] Beletic J W, Blank R, Gulbransen D, et al. Teledyne imaging sensors: infrared imaging technologies for astronomy and civil space[C]//High Energy, Optical, and Infrared Detectors for Astronomy III, 2008, 7021: 70210H.
    [5] Rogalski A. Recent progress in infrared detector technologies[J]. Infrared Physics & Technology, 2011, 54(3): 136-154. http://www.researchgate.net/profile/Antoni_Rogalski/publication/241112884_Recent_progress_in_HgCdTe_infrared_detector_technology/links/5524e12e0cf22e181e73b04e.pdf
    [6] Rogalski A. Next decade in infrared detectors[C]//Electro-Optical and Infrared Systems: Technology and Applications XIV, 2017, 10433: 104330L.
    [7] Caulfield J, Curzan J. Small pixel infrared sensor technology[C]//Infrared Technology and Applications XLIII, 2017, 10177: 1017725.
    [8] Chen T, Catrysse P B, El Gamal A, et al. How small should pixel size be?[C]//Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications, 2000, 3965: 451-459.
    [9] Farrell J, Xiao F, Kavusi S. Resolution and light sensitivity tradeoff with pixel size[C]//Digital Photography II, 2006, 6069: 60690N.
    [10] Lutz H, Breiter R, Eich D, et al. Small pixel pitch MCT IR-modules[C]//Infrared Technology and Applications XLII, 2016, 9819: 98191Y.
    [11] Lutz H, Breiter R, Eich D, et al. Towards ultra-small pixel pitch cooled MW and LW IR-modules[C]//Infrared Technology and Applications XLIV, 2018, 10624: 106240B.
    [12] Espuno L, Pacaud O, Reibel Y, et al. A new generation of small pixel pitch/SWaP cooled infrared detectors[C]//Electro-Optical and Infrared Systems: Technology and Applications XII, 2015: 9648: 96480H.
    [13] Manissadjian A, Rubaldo L, Rebeil Y, et al. Improved IR detectors to swap heavy systems for SWaP[C]//Infrared Technology and Applications XXXVIII, 2012, 8353: 835334.
    [14] Johnson John. Analysis of image forming systems[C]//Proceeding of SPIE- The International Society for Optical Engineering, 1958, 513(513) : 761.
    [15] 周立庆, 宁提, 张敏, 等. 10 µm像元间距1024×1024中波红外探测器研制进展[J]. 激光与红外, 2019, 49(8): 915-920. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201908002.htm

    ZHOU L, NING T, ZHANG M, et al. Developments of 10 µm pixel pitch 1024×1024 MW infrared detectors[J]. Laser & Infrared, 2019, 49(8): 915-920. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201908002.htm
    [16] Berthoz J, Rubaldo L, Maillard M, et al. MTF performance: measurements, modelisation, and optimization for Sofradir II-VI IR photodetectors[C]//Quantum Sensing and Nanophotonic Devices XII, 2015, 9370: 93700O.
    [17] Reibel Y, Augey T, Verdet S, et al. High-performance and long-range cooled IR technologies in France[C]//Infrared Technology and Applications XXXIX, 2013, 8704: 87040B.
    [18] Reibel Y, Rubaldo L, Manissadjian A, et al. High-performance MCT and QWIP IR detectors at Sofradir[C]//Electro-Optical and Infrared Systems: Technology and Applications IX, 2012, 8541: 85410A.
    [19] Reibel Y, Rouvie A, Nedelcu A, et al. Large format, small pixel pitch and hot detectors at SOFRADIR[C]//Electro-Optical and Infrared Systems: Technology and Applications X, 2013, 8896: 88960B.
    [20] Lefoul X, Pere-Laperne N, Augey T, et al. New SOFRADIR 10 µm pixel pitch infrared products[C]//Electro-Optical and Infrared Systems: Technology and Applications XI, 2014, 9249: 924911.
    [21] Tan C L, Mohseni H. Emerging technologies for high performance infrared detectors[J]. Nanophotonics, 2018, 7(1): 169-197. http://www.onacademic.com/detail/journal_1000040103679310_e3b6.html
    [22] Beletic J W, Blank R, Gulbransen D, et al. Teledyne imaging sensors: infrared imaging technologies for astronomy and civil space[C]//High Energy, Optical, and Infrared Detectors for Astronomy III, 2008: 70210H.
    [23] Dorn R J, Eschbaumer S, Hall D N, et al. Evaluation of the Teledyne SIDECAR ASIC at cryogenic temperature using a visible hybrid H2RG focal plane array in 32 channel readout mode[C/]//Proc. of SPIE, 2008: DOI:10.1117/12.788717.
    [24] Bai Y, Bajaj J, Beletic J W, et al. Teledyne imaging sensors: silicon CMOS imaging technologies for x-ray, UV, visible, and near infrared[C]//Proc. of SPIE, 2008, 7021: 702102.
    [25] 毕查德·拉扎维. 模拟CMOS集成电路设计[M]. 西安: 西安交通大学出版社, 2003.

    Behzad Razavi. Design of Analog CMOS Integrated Circuits[M]. Xi'an: Xi'an JiaoTong University Press, 2003.
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  260
  • HTML全文浏览量:  51
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-26
  • 修回日期:  2021-09-02
  • 刊出日期:  2021-09-20

目录

    /

    返回文章
    返回