基于谱残差变换的电力设备热缺陷识别技术

黄志鸿, 肖剑, 徐先勇, 张辉

黄志鸿, 肖剑, 徐先勇, 张辉. 基于谱残差变换的电力设备热缺陷识别技术[J]. 红外技术, 2023, 45(8): 884-889.
引用本文: 黄志鸿, 肖剑, 徐先勇, 张辉. 基于谱残差变换的电力设备热缺陷识别技术[J]. 红外技术, 2023, 45(8): 884-889.
HUANG Zhihong, XIAO Jian, XU Xianyong, ZHANG Hui. Spectral Residual Transformation for Thermal Defect Detection of Power Equipment[J]. Infrared Technology , 2023, 45(8): 884-889.
Citation: HUANG Zhihong, XIAO Jian, XU Xianyong, ZHANG Hui. Spectral Residual Transformation for Thermal Defect Detection of Power Equipment[J]. Infrared Technology , 2023, 45(8): 884-889.

基于谱残差变换的电力设备热缺陷识别技术

基金项目: 

国网湖南省电力有限公司科技项目 5216A520000V

湖南省科技人才托举工程“小荷”科技人才项目 2023TJ-X48

详细信息
    通讯作者:

    黄志鸿(1993-),男,湖南长沙人,博士,高级工程师,主要研究方向为电力设备故障智能诊断,红外图像处理。E-mail: zhihong_huang111@163.com

  • 中图分类号: TP751.1

Spectral Residual Transformation for Thermal Defect Detection of Power Equipment

  • 摘要: 本文提出一种基于谱残差变换的电力设备热缺陷识别技术。首先,根据电力设备红外图像中自然背景的冗余特性和热缺陷目标的显著性特征来构建谱残差变换模型,对电力设备红外图像进行谱残差变换,生成具有显著性信息的热缺陷初始识别结图。然后,采用引导滤波技术对初始识别结果进行处理,联合利用红外图像中的温差信息和空间结构信息,提升热缺陷的识别率,生成最终识别结果图。实验结果表明:与其他传统热缺陷识别方法相比,本文所提出的方法在识别精度与识别效率上有显著优势,满足电力设备热缺陷带电检测的应用需求。
    Abstract: This study introduces a thermal defect detection technique for power equipment based on a spectral transformation model. First, the spectral residual transform model is constructed according to the redundancy of the natural background and significance of the thermal defect target in infrared images of power equipment. Then, the infrared image of the power equipment is transformed by spectral residuals to remove redundant image information of the natural background target, and a result map with significant information is generated. The experimental results show that compared with other traditional thermal defect detection methods, the proposed method has significant advantages in terms of recognition accuracy and efficiency and meets the application requirements of thermal fault detection of power equipment.
  • 图  1   所提出的SRT方法流程

    Figure  1.   The schematic diagram of the proposed SRT method

    图  2   输入的红外图像与局部放大图

    Figure  2.   Input infrared image and its local enlarged drawing

    图  3   初始识别结果图与局部放大图

    Figure  3.   Initial detection image and its local enlarged drawing

    图  4   最终识别结果图与局部放大图

    Figure  4.   Final detection image and its local enlarged drawing

    图  5   不同方法在第一幅测试图的识别结果

    Figure  5.   Different diagnosis results on the first test image

    图  6   不同方法在第2幅测试图的识别结果

    Figure  6.   Different diagnosis results on the second test image

    图  7   不同方法在第3幅测试图的识别结果

    Figure  7.   Different diagnosis results on the third test image

    图  8   有无引导滤波处理对诊断精度的影响

    Figure  8.   Diagnosis accuracy with and without the guided filtering step

    表  1   不同识别方法的AUC指标

    Table  1   AUC values of different diagnosis methods

    Test images RX LDP LRR SRT
    1 0.9707 0.8312 0.8574 0.9969
    2 0.9901 0. 9132 0. 9324 0.9990
    3 0.9893 0. 9253 0. 9486 0.9993
    下载: 导出CSV

    表  2   不同识别方法的运行时间

    Table  2   Running time of different detection methods s

    Test images RX LDP LRR SRT
    1 0.59 0.75 0.47 0.63
    2 0.53 0.61 0.34 0.55
    3 0.84 0.98 0.56 0.91
    下载: 导出CSV
  • [1] 刘嵘, 刘辉, 贾然, 等. 一种智能型电网设备红外识别系统的设计[J]. 红外技术, 2020, 42(12): 198-1202. http://hwjs.nvir.cn/article/id/a00b6f68-052d-40c0-a00f-1f0ff120ce69

    LIU Rong, LIU Hui, JIA Ran, et al. Design of intelligent infrared di-agnosis system for power grid equipment[J]. Infrared Technology, 2020, 42(12): 1198-1202. http://hwjs.nvir.cn/article/id/a00b6f68-052d-40c0-a00f-1f0ff120ce69

    [2] 张文峰, 彭向阳, 陈锐民, 等. 基于无人机红外视频的输电线路发热缺陷智能识别技术[J]. 电网技术, 2014, 38(5): 1334-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201405034.htm

    ZHANG Wenfeng, PENG Xiangyang, CHEN Ruiming, et al. Intelligent diagnostic techniques of abnormal heat defect in transmission lines based on unmanned helicopter infrared video[J]. Power System Technology, 2014, 38(5): 1334-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201405034.htm

    [3] 王淼, 杜伟, 孙鸿博, 等. 基于红外图像识别的输电线路故障识别方法[J]. 红外技术, 2017, 39(4): 383-386. http://hwjs.nvir.cn/article/id/hwjs201704015

    WANG Miao, DU Wei, SUN Hongbo, et al. Transmission line fault diagnosis method based on infrared image recognition[J]. Infrared Technology, 2017, 39(4): 383-386. http://hwjs.nvir.cn/article/id/hwjs201704015

    [4] 胡洛娜, 彭云竹, 石林鑫. 核猫群红外图像异常检测方法在电力智能巡检中的应用[J]. 红外技术, 2018, 40(9): 323-328. http://hwjs.nvir.cn/article/id/hwjs201809013

    HU Luona, PENG Yunzhu, SHI Linxin. Anomaly detection method of infrared images based on kernel cat swarm optimization clustering with application in intelligent electrical power inspection[J]. Infrared Technology, 2018, 40(9): 323-328. http://hwjs.nvir.cn/article/id/hwjs201809013

    [5] 魏钢, 冯中正, 唐跃林, 等. 输变电设备红外故障识别技术与试验研究[J]. 电气技术, 2013, 14(6): 75-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DQJS201306030.htm

    WEI Gang, FENG Zhongzheng, TANG Yuelin, et al. The infrared diagnostic technology of power transmission devices and experimental study[J]. Electrical Technology, 2013, 14(6): 75-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DQJS201306030.htm

    [6] 李鑫, 崔昊杨, 霍思佳, 等. 基于粒子群优化法的Niblack电力设备红外图像分割[J]. 红外技术, 2018, 40(8): 780-785. http://hwjs.nvir.cn/article/id/hwjs201808010

    LI Xin, CUI Wuyang, HUO Siyang. Niblack's method for infrared image segmentation of electrical equipment improved by particle swarm optimization[J]. Infrared Technology, 2018, 40(8): 780-785. http://hwjs.nvir.cn/article/id/hwjs201808010

    [7] 黄志鸿, 吴晟, 肖剑, 等. 基于引导滤波的电力设备热缺陷识别方法研究[J]. 红外技术, 2021, 43(9): 910-915. http://hwjs.nvir.cn/article/id/cb2a71f1-cd7c-4e76-977b-b6f7472b905d

    HUANG Zhihong, WU Sheng, XIAO Jian, et al. Thermal fault diagnosis of power equipments based on guided filter[J]. Infrared Technology, 2021, 43(9): 910-915. http://hwjs.nvir.cn/article/id/cb2a71f1-cd7c-4e76-977b-b6f7472b905d

    [8] 黄志鸿, 洪峰, 黄伟. 形状自适应低秩表示的电力设备热故障诊断方法研究[J]. 红外技术, 2022, 44(8): 870-874. http://hwjs.nvir.cn/article/id/8f0f8a69-4b47-46b4-bcdf-ea623287093f

    HUANG Zhihong, HONG Feng, HUANG Wei. Shape adaptation low rank representation for thermal fault diagnosis of power equipments[J]. Infrared Technology, 2022, 44(8): 870-874. http://hwjs.nvir.cn/article/id/8f0f8a69-4b47-46b4-bcdf-ea623287093f

    [9] 常亮, 邓小明, 周明全, 等. 图像理解中的卷积神经网[J]. 自动化学报, 2016, 42(9): 1300-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201609002.htm

    CHANG Liang, DENG Xiaoming, ZHOU Mingquan, et al. Convolu-tional neural networks in image understanding[J]. Acta Automatica Sinica, 2016, 42(9): 1300-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201609002.htm

    [10] 魏东, 龚庆武, 来文青, 等. 基于卷积神经网络的输电线路区内外故障判断及故障选相方法研究[J]. 中国电机工程学报, 2016, 36(5): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC2016S1003.htm

    WEI Dong, LONG Qinwu, LAI Wenqing, et al. Research on internal and external fault diagnosis and fault-selection of transmission line based on convolutional neural network[J]. Proceedings of the CSEE, 2016, 36(5): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC2016S1003.htm

    [11] 周可慧, 廖志伟, 肖异瑶, 等. 基于改进CNN的电力设备红外图像分类模型构建研究[J]. 红外技术, 2019, 41(11): 1033-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201911007.htm

    ZHOU Kehui, LIAO Zhiwei, XIAO Yiyao, et al. Construction of infrared image classification model for power equipments based on improved CNN[J]. Infrared Technology, 2019, 41(11): 1033-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201911007.htm

    [12]

    HOU Xiaodi, ZHANG Liqing. Salient detection: a spectral residual approach[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2007: 18-23.

    [13]

    HE Kaiming, SUN Jian, TANG Xiao'ou. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409.

    [14]

    GAGLIARDI Robert, REED Irving S. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustic Speech Signal Processing, 1990, 38(10): 1760-1770.

    [15]

    KANG Xudong, ZHANG Xiangping, LI Shutao, et al. Hyperspectral anomaly detection with attribute and edge-preserving filters[J]. IEEE Trans. Geosci. Remote Sens. , 2017, 55(10): 5600-5611.

    [16]

    XU Yu, LI Jun, WU Zebin, et al. Anomaly detection in hyperspectral images based on low-rank and sparse representation[J]. IEEE Trans. Geosci. Remote Sens. , 2016, 54(4): 1287-1293.

    [17] 蒋昀宸, 樊绍胜, 陈骏星溆. 带电作业智能新技术及其应用现状[J]. 湖南电力, 2018, 38(5): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDL201805001.htm

    JIANG Yunchen, FAN Zhaosheng, CHEN Junxingxu. Smart new-technologies and applications for live work[J]. Hunan Electric Power, 2018, 38(5): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDL201805001.htm

  • 期刊类型引用(1)

    1. 周兵,吉洪湖. 尾锥冷却对轴对称分开排气系统红外辐射特征的影响. 红外技术. 2016(05): 422-428 . 本站查看

    其他类型引用(0)

图(8)  /  表(2)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  56
  • PDF下载量:  30
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-12-25
  • 修回日期:  2023-01-29
  • 刊出日期:  2023-08-19

目录

    /

    返回文章
    返回