Design of a Long-Wave Infrared Dual-FOV Fast Scanning Optical System
-
摘要:
双视场扫描光学系统能搜索和跟踪大空域和远距离的目标,保持良好的图像质量并实现序列图像的配准拼接,在安全、国防等领域具有广阔的应用前景。为了满足红外系统高分辨率、低成本、小型化、轻量化的需求,基于长波非致冷型1024×768大面阵焦平面探测器,利用CODE-V软件设计了一种双视场快速扫描光学系统。该系统由开普勒望远镜组和聚焦镜组组成,采用轴向变倍的方式实现双视场变焦,通过望远光路中的扫描振镜快速、往返运动,对目标进行运动补偿,扩大成像视野。采用动态调制传递函数法分析空间振动对成像质量的影响,保证运动过程中图像无变虚、拖影等问题。光学系统畸变<0.5%,实现全视场范围内的高精度图像配准,保持系统在扫描时成像稳定、清晰。
Abstract:Dual-field scanning optical systems can search for and track targets across large airspaces and over long distances, maintain good image quality, and achieve registration and splicing of sequential images. They have broad application prospects in security, national defense, and other fields. To meet the requirements of high resolution, low cost, miniaturization, and lightweight design in infrared systems, a dual field fast scanning optical system was designed using CODE-V software based on a long wave, uncooled, large format focal plane array detector with a resolution of 1024×768 pixels. The system consists of a Kepler telescope group and a focusing lens group. It achieves dual-FOV zoom functionality through the axial movement of the zoom group. A scanning galvanometer in the telecentric optical path moves rapidly and reciprocally to compensate for target motion and expand the field-of-view angle. The influence of spatial vibration on imaging quality is analyzed by using the dynamic modulation transfer function method to ensure that there are no problems such as image blurring and trailing during the motion process. The optical system distortion is less than 0.5%, achieving high-precision image registration throughout the entire field of view and maintaining stable and clear imaging during scanning.
-
-
表 1 光学设计参数
Table 1 Optical design parameters
Wavelength range/μm 8~12 Wide field of view 9.75°×7.32° Narrow field of view 4.45°×3.34° Focal length range/mm 72 & 158 F number 1.1 Operational temperature range/℃ −40~+60 Image size (diagonal)/mm 15.36 表 2 MTF值(42 lp/mm)
Table 2 Values of MTF(42 lp/mm)
Effective focal
length /mmField of view MTF FMS value of
the diffuse spot /μm72 0ω 0.44 9.1 0.7ω 0.36 9.5 1ω 0.32 14.2 158 0ω 0.42 8.0 0.7ω 0.35 11.3 1ω 0.31 14.7 -
[1] 徐振亚, 白晓东, 李丽娟. 基于作用距离的红外探测系统工作波段选择方法[J]. 红外, 2011, 32(3): 23-28. XU Zhenya, BAI Xiaodong, LI Lijuan. Selection of operation waveband for infrared detection system based on working distance[J]. Infrared, 2011, 32(3): 23-28.
[2] 丁利伟, 甘宇红, 王宗俐, 等. 中波红外和长波红外探测系统性能的比较与选择[J]. 红外, 2014, 35(5): 1-6. DOI: 10.3969/j.issn.1672-8785.2014.05.001 DING Liwei, GAN Yuhong, WANG Zongli. Performance comparison and selection of mid-wave and long-wave infrared detection systems[J]. Infrared, 2014, 35(5): 1-6. DOI: 10.3969/j.issn.1672-8785.2014.05.001
[3] 马文坡. 中波红外与长波红外推扫成像性能分析[J]. 红外与激光工程, 2014, 43(12): 3861-3865. DOI: 10.3969/j.issn.1007-2276.2014.12.001 MA Wenpo. Performance analysis on MWIR and LWIR pushbroom imaging[J]. Infrared and Laser Engineering, 2014, 43(12): 3861-3865. DOI: 10.3969/j.issn.1007-2276.2014.12.001
[4] 吴海清, 王朋. 小型化大面阵非制冷红外连续变焦光学系统设计[J]. 红外, 2020, 41(2): 1-6. DOI: 10.3969/j.issn.1672-8785.2020.02.001 WU Haiqing, WANG Peng. Design of miniaturized large-format uncooled infrared continuous zoom optical system[J]. Infrared, 2020, 41(2): 1-6. DOI: 10.3969/j.issn.1672-8785.2020.02.001
[5] Inventores Jan Rusman, Kia Silverbrook, Paul Lapstun. Scanner for scanning items marked with near-infrared tags: US: 0032599 A1 [P]. 2009.
[6] 张敬贤, 李玉丹, 金伟其. 微光与红外成像技术[M]. 北京: 北京理工大学出版社, 1995. ZHANG Jingxian, LI Yudang, JIN Weiqi. Gleam and Infrared Imaging Technology[M]. Beijing: Beijing Institute of Technology Press, 1995.
[7] 于洋, 王世勇, 蹇毅, 等. 面阵探测器连续扫描成像光学系统[J]. 红外与激光工程, 2016, 45(1): 122-126. YU Yang, WANG Shiyong, JIAN Yi. Realization of an optical system based on continuous-scan focal plane array[J]. Infrared and Laser Engineering, 2016, 45(1): 122-126.
[8] YAN Aqi, WU Dengshan, WANG Hao, et al. Design of compact infrared zoom lens system[J]. Advanced Materials Research, 2012, 1991: 324-327.
[9] 孙国斌, 弥谦. 光学振镜转角与扫描角度变化关系的研究[J]. 西安工业大学学报, 2010, 30(5): 421-424. DOI: 10.3969/j.issn.1673-9965.2010.05.003 SUN Guobin, MI Qian. Determination of the relation between the deflection angle and the scanning angle of an optical scanner[J]. Journal of Xi'an Technological University, 2010, 30(5): 421-424. DOI: 10.3969/j.issn.1673-9965.2010.05.003
[10] 刘金荣. f-θ扫描物镜设计与研究[J]. 电子工业专用设备, 2015(6): 45-50. LIU Jinrong. Research and design for f-θ scan lens[J]. Equipment for Electronic Products Manufacturing, 2015(6): 45-50.
[11] 丁学专, 黄姜卿, 李争, 等. 六倍连续变焦面阵扫描红外光学系统设计[J]. 红外与毫米波学报, 2021, 40(1): 89-95. DING Xuezhuan, HUANG Jiangqing, LI Zheng, et al. Optic design of 6× continuous-zoom scanning infrared system with array detector[J]. J. Infrared Millim. Waves, 2021, 40(1): 89-95.
[12] Alexander H Slocum, Stephen E Jones, Rajiv Gupta. Design of a calibration phantom for measuring the temporal resolution of a tomographic imaging device[J]. Journal of Medical Devices-transactions of The Asme., 2007, 1(3): 225-232. doi: 10.1115/1.2785189
[13] Ali Z, Zakian C, LI Q, et al. 360° optoacoustic capsule endoscopy at 50 Hz for esophageal imaging[J]. Photoacoustics, 2022, 25: 100333. doi:10.1016/ j.pacs.2022.100333
[14] 周建, 周易, 倪歆玥, 等. 偏振集成红外光电探测器研究进展与应用[J]. 光电工程, 2023, 50(5): 66-84. ZHOU Jian, ZHOU Yi, NI Xinyue. Research progress and applications of polarization-integrated infrared photodetector[J]. Opto-Electronic Engineering, 2023, 50(5): 66-84.