留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于热辐射信息保留的图像融合算法

钱震龙 陈波

钱震龙, 陈波. 基于热辐射信息保留的图像融合算法[J]. 红外技术, 2021, 43(9): 861-868.
引用本文: 钱震龙, 陈波. 基于热辐射信息保留的图像融合算法[J]. 红外技术, 2021, 43(9): 861-868.
QIAN Zhenlong, CHEN Bo. Image Fusion Algorithm Based on Thermal Radiation Information Retention[J]. Infrared Technology , 2021, 43(9): 861-868.
Citation: QIAN Zhenlong, CHEN Bo. Image Fusion Algorithm Based on Thermal Radiation Information Retention[J]. Infrared Technology , 2021, 43(9): 861-868.

基于热辐射信息保留的图像融合算法

详细信息
    作者简介:

    钱震龙(1994-), 男, 四川蓬溪人, 硕士研究生, 主要研究方向为嵌入式技术、红外图像处理。E-mail: 3143078364@qq.com

  • 中图分类号: TN911.73

Image Fusion Algorithm Based on Thermal Radiation Information Retention

  • 摘要: 针对现有的红外与可见光图像融合算法无法很好地保留红外图像热辐射信息这一问题,提出了一种基于热辐射信息保留的图像融合算法。通过NSCT(non-subsampled contourlet transform)变换对红外与可见光图像进行多尺度分解,得到各自的高频子带和低频子带,可见光低频子带部分经拉普拉斯算子提取特征后与红外低频子带部分叠加得到融合图像的低频系数,高频部分使用基于点锐度和细节增强的融合规则进行融合以得到高频系数,最后通过逆NSCT变换重构得到融合图像。实验表明,相较于其它图像融合算法,所提算法能在保留红外图像热辐射信息的同时,保有较好的清晰细节表现能力,并在多项客观评价指标上优于其它算法,具有更好的视觉效果,且在伪彩色变换后有良好的视觉体验,验证了所提算法的有效性和可行性。
  • 图  1  NSCT变换示意图

    Figure  1.  NSCT transformation diagram

    图  2  整体融合框架

    Figure  2.  Integrated framework

    图  3  Kaptein_1123的融合结果

    Figure  3.  Fusion results of Kaptein_1123

    图  4  Kamtein_1654的融合结果

    Figure  4.  Fusion results of Kamtein_1654

    图  5  Meting003的融合结果

    Figure  5.  Fusion results of Meting003

    图  6  Maninhuis的融合结果

    Figure  6.  Fusion results of Maninhuis

    图  7  伪彩色效果图A

    Figure  7.  Pseudo-color rendering A

    图  8  伪彩色效果图B

    Figure  8.  Pseudo-color rendering B

    表  1  图 3各算法评价指标

    Table  1.   Fig. 3 Evaluation indexes of each algorithm

    Method AG EN SF SSIM MI VIF
    DWT 4.9666 6.6713 9.0816 0.7567 19.8462 0.5406
    LP 5.2522 6.8009 9.8522 0.7454 16.4003 0.5501
    NSCT 4.9564 7.3060 9.2742 0.6267 22.9055 0.5282
    NSCT-PCNN 4.6766 7.2198 8.8717 0.6945 2.2669 0.7031
    Proposed method 6.4685 7.0244 11.6793 0.8661 77.5039 0.7098
    下载: 导出CSV

    表  2  图 4各算法评价指标

    Table  2.   Fig. 4 Evaluation indexes of each algorithm

    Method AG EN SF SSIM MI VIF
    DWT 5.8641 6.4416 11.1577 0.5967 7.4241 0.2729
    LP 6.2391 6.6517 12.0277 0.5715 7.7505 0.3038
    NSCT 6.0105 7.2517 11.6053 0.4455 10.4365 0.2970
    NSCT-PCNN 5.3421 7.3359 10.6143 0.5201 7.1469 0.4708
    Proposed method 7.3643 6.6584 13.7557 0.6811 22.8122 0.3906
    下载: 导出CSV

    表  3  平均评价指标

    Table  3.   Average evaluation indexes

    Method AG EN SF SSIM MI VIF
    DWT 6.1136 7.0445 11.9406 0.6936 9.1349 0.2918
    LP 6.4499 7.3049 12.6930 0.6892 8.9399 0.3481
    NSCT 6.1955 7.7048 12.1721 0.5986 10.3829 0.3176
    NSCT-PCNN 5.5698 7.8429 11.3441 0.7352 8.5166 0.5246
    Proposed method 7.6364 7.3516 14.6092 0.7520 24.9254 0.4028
    下载: 导出CSV
  • [1] 谢春宇, 徐建, 李新德, 等. 基于深度学习的红外与可见光图像融合方法[J]. 指挥信息系统与技术, 2020, 11(2): 15-20, 38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXT202002003.htm

    XIE Chunyu, XU Jian, LI Xinde, et al. Infrared and visible image fusion method based on deep learning[J]. Command Information System and Technology, 2020, 11(2): 15-20, 38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXT202002003.htm
    [2] Rajiv S, Ashish K. Multiscale Medical image fusion in wavelet domain[J]. The Scientific World Journal, 2013, 2013: 521034. http://www.scienceopen.com/document_file/6e3eb747-a10e-42b1-8a95-0a0060e9b4b5/PubMedCentral/6e3eb747-a10e-42b1-8a95-0a0060e9b4b5.pdf
    [3] Padma Ganasala, Achanta Durga Prasad. Medical image fusion based on laws of texture energy measures in stationary wavelet transform domain[J]. International Journal of Imaging Systems and Technology, 2020, 30(3): 544-557. doi:  10.1002/ima.22393
    [4] Do Minh N, Vetterli Martin. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing, 2005, 14(12): 1-16. doi:  10.1109/TIP.2005.861050
    [5] Mertens T, Kaut Z J, Van Reeth F. Exposure fusion: a simple and practical alternative to high dynamic range photography[J]. Computer Graphics Forum, 2009, 28(1): 161-171. doi:  10.1111/j.1467-8659.2008.01171.x
    [6] Da Cunha A L, Zhou J, Do M N. The nonsubsampled contourlet transform: theory, design, and applications[J]. IEEE Transactions on Image Processing, 2006, 15: 3089-3101. doi:  10.1109/TIP.2006.877507
    [7] XING Xiaoxue, LIU Cheng, LUO Cong, et al. Infrared and visible image fusion based on nonlinear enhancement and NSST decomposition[J]. EURASIP Journal on Wireless Communications and Networking, 2020, 2020(1): 694-700. doi:  10.1186/s13638-020-01774-6
    [8] WANG Z, LI X, DUAN H, et al. Multifocus image fusion using convolutional neural networks in the discrete wavelet transform domain[J]. Multimedia Tools and Applications, 2019, 78(24): 34483-34512. doi:  10.1007/s11042-019-08070-6
    [9] 杨艳春, 王艳, 党建武, 等. 基于RGF和改进自适应Unit-Linking PCNN的红外与可见光图像融合[J]. 光电子·激光, 2020, 31(4): 401-410. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ202004010.htm

    YANG Yanchun, WANG Yan, DANG Jianwu, et al. Infrared and visible image fusion based on RGF and improved adaptive Unit-Linking PCNN[J]. Journal of Optoelectronics·Laser, 2020, 31(4): 401-410. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ202004010.htm
    [10] 林玉池, 周欣, 宋乐, 等. 基于NSCT变换的红外与可见光图像融合技术研究[J]. 传感器与微系统, 2008, 27(12): 45-47. doi:  10.3969/j.issn.1000-9787.2008.12.015

    LIN Yuchi, ZHOU Xin, SONG Le, et al. Infrared and visible image fusion technology based on non subsampled contourlet transform[J]. Transducer and Microsystem Technologies, 2008, 27(12): 45-47. doi:  10.3969/j.issn.1000-9787.2008.12.015
    [11] 程永翔, 刘坤, 贺钰博. 基于卷积神经网络与视觉显著性的图像融合[J]. 计算机应用与软件, 2020, 37(3): 225-230. doi:  10.3969/j.issn.1000-386x.2020.03.038

    CHENG Yongxiang, LIU Kun, HE Yubo. Image fusion with convolutional neural network and visual saliency[J]. Computer Applications and Software, 2020, 37(3): 225-230. doi:  10.3969/j.issn.1000-386x.2020.03.038
    [12] 巩稼民, 刘爱萍, 马豆豆, 等. 结合邻域特征与IDCSCM的红外与可见光图像融合[J]. 激光与红外, 2020, 50(7): 889-896. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202007020.htm

    GONG Jiamin, LIU Aiping, MA Doudou, et al. Infrared and visible image fusion combining neighborhood features with IDCSCM[J]. Laser & Infrared, 2020, 50(7): 889-896. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202007020.htm
    [13] 孙英慧, 蒲东兵. 基于拉普拉斯算子的边缘检测研究[J]. 长春师范学院学报: 人文社会科学版, 2009, 28(12): 4-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CCSS200912002.htm

    SUN Yinghui, PU Dongbing. Edge Detection Research on Laplace Operator[J]. Journal of Changchun Normal University: Humanities and Social Sciences Edition, 2009, 28(12): 4-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CCSS200912002.htm
    [14] 彭土有, 吴洁, 彭俊. 拉普拉斯边缘检测算法的改进及其在探地雷达中的应用[J]. 现代雷达, 2020, 42(8): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-XDLD202008008.htm

    PENG Tuyou, WU Jie, PENG Jun. Improvement of Laplacian edge detection algorithm and its application on GPR[J]. Modern Radar, 2020, 42(8): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-XDLD202008008.htm
    [15] Xydeas C S, Petrovi V. Objective image fusion performance measure[J]. Electronics Letters, 2000, 36(4): 308-309. doi:  10.1049/el:20000267
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  11
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-21
  • 修回日期:  2020-12-25
  • 刊出日期:  2021-09-20

目录

    /

    返回文章
    返回

    《红外技术》网站维护通知

    尊敬的专家、作者、读者:

    国庆假期期间(10月1日-3日)因设备维护,《红外技术》网站(hwjs.nvir.cn)将于2021年9月30日18:00-10月4日13:00关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    《红外技术》编辑部

    2021年9月29日