基于脉冲红外热成像技术的锂电池端盖焊接质量检测

Welding Quality Inspection for Explosion-proof Sheet of Lithium Battery Based on Pulsed Infrared Thermography

  • 摘要: 锂电池端盖作为保障锂电池安全的关键部件,端盖是一种铝制的薄片,采用激光焊接工艺,焊接过程中容易造成焊穿孔、断焊、虚焊的现象,目前主要依靠目视检测、可见光图像检测,但上述检测方式不能检测出虚焊问题。本文使用脉冲红外热成像技术对激光焊接进行检测,制作了焊接率为100%、50%、33%、25%共4个试件,采用信号重建方法可以消除试件表面不匀的影响,一阶导图像可以看到焊接区域,焊接率越大,焊接区域亮斑越大;对图像进行二值分割,结果表明激光焊接率和检测面积成正相关线性关系,验证了脉冲红外热成像技术对锂电池端盖焊接质量检测的有效性,为锂电池端盖焊接质量检测提供了一种新方法。

     

    Abstract: Explosion-proof sheets are key components in ensuring the safety of lithium batteries. These aluminum sheets easily cause welding perforations, broken welding, and false welding during the welding process using laser welding technology. Presently, inspection mainly relies on visual inspection and visible light image detection; however, these detection methods cannot detect faulty welding. Here, we propose a pulsed infrared thermography technology to detect laser welding defects. Four specimens with welding ratios of 100, 50, 33, and 25% were fabricated. The signal reconstruction method eliminates the influence of the uneven surface of the specimen. It is shown that the larger the welding percentage, the larger the bright spot in 1D images of the welding area. The binary segmentation of the 1-D image indicated that the laser welding percentage and detection area have a positive linear correlation, which verifies the effectiveness of the pulsed infrared thermal imaging technology for lithium battery explosion-proof sheet welding quality inspection, providing a new method for detecting the welding quality of lithium battery explosion-proof sheets.

     

/

返回文章
返回