距离和雾对红外测温精度影响的补偿研究

何振鹏, 魏星, 黎柏春, 闫方超, 胡艺馨, 刘勇, 王智

何振鹏, 魏星, 黎柏春, 闫方超, 胡艺馨, 刘勇, 王智. 距离和雾对红外测温精度影响的补偿研究[J]. 红外技术, 2024, 46(6): 681-690.
引用本文: 何振鹏, 魏星, 黎柏春, 闫方超, 胡艺馨, 刘勇, 王智. 距离和雾对红外测温精度影响的补偿研究[J]. 红外技术, 2024, 46(6): 681-690.
HE Zhenpeng, WEI Xing, LI Baichun, YAN Fangchao, HU Yixin, LIU Yong, WANG Zhi. Influence of Distance and Fog on Infrared Temperature Measurement Accuracy[J]. Infrared Technology , 2024, 46(6): 681-690.
Citation: HE Zhenpeng, WEI Xing, LI Baichun, YAN Fangchao, HU Yixin, LIU Yong, WANG Zhi. Influence of Distance and Fog on Infrared Temperature Measurement Accuracy[J]. Infrared Technology , 2024, 46(6): 681-690.

距离和雾对红外测温精度影响的补偿研究

基金项目: 

天津市教委科研计划项目 2020KJ015

详细信息
    作者简介:

    何振鹏(1985-),男,江西九江人,博士,副教授,从事机械摩擦学、发动机气路密封研究。E-mail: hezhenpeng@tju.edu.cn

    通讯作者:

    黎柏春(1986-),男,重庆人,博士,讲师,从事数字化设计与制造、计算机视觉研究。E-mail: bc_li@cauc.edu.cn

  • 中图分类号: TN219

Influence of Distance and Fog on Infrared Temperature Measurement Accuracy

  • 摘要:

    为提高在线式红外热像仪在大雾天气下的测温精度,研究了距离、相对湿度和雾对红外热像仪测温精度的影响。采用二次开发的热红外故障数据采集系统,搭建实验平台,分别进行单因素和多因素干扰下的测温实验。得到距离-误差温度的分段多项式拟合关系;基于暗通道先验理论,实现对雾的定量描述,得到透射率-误差温度的指数函数拟合关系;以代数和的方式,提出一种误差补偿模型来补偿距离和雾共同作用产生的测量误差。实验结果表明,该模型能显著提高热像仪测温精度,对在线式红外热像仪在大雾环境下进行长时间精确温度数据的采集与存储,构建设备故障数据特征库具有重要意义。

    Abstract:

    To improve the temperature measurement accuracy of online infrared thermal imagers in foggy weather, the effects of distance, relative humidity, and fog on temperature measurement accuracy of infrared thermal imagers were studied. A secondary thermal infrared fault data acquisition system was used to build an experimental platform for temperature measurement experiments under single-and multi-factor interference, thereby obtaining a piecewise polynomial fitting relationship between distance and error temperature. Based on the prior theory of dark channel, the quantitative description of fog was realized, and the exponential function fitting relationship between transmittance and error temperature was obtained. By way of algebraic sum, an error compensation model was proposed to compensate the measurement error caused by the interaction of distance and fog. Experimental results show that this model can significantly improve the temperature measurement accuracy of thermal imagers. For an online infrared thermal imager, collecting and storing temperature data for a long time in foggy environments are of great significance in building an equipment fault data feature database.

  • 图  1   红外热像仪测温原理

    Figure  1.   Temperature measurement schematic diagram of infrared thermal imager

    图  2   系统界面

    Figure  2.   System interface

    图  3   实验装置

    Figure  3.   Experimental device

    图  4   不同距离处三次实验测量结果

    Figure  4.   Three experimental measurements at different distances

    图  5   不同距离处实验测量结果局部放大图

    Figure  5.   Partial enlarged view of experimental measurement results at different distances

    图  6   距离-误差温度拟合曲线

    Figure  6.   The distance-error temperature fitting curve

    图  7   模型补偿前后温度对比曲线

    Figure  7.   Temperature comparison curves before and after model compensation

    图  8   测量温度随距离和相对湿度变化曲面

    Figure  8.   Curved surface of measuring temperature varying with distance and relative humidity

    图  9   测量温度随透射率变化曲面及散点图

    Figure  9.   Curved surface and scatter diagram of measured temperatures varying with transmittance

    图  10   透射率-误差温度拟合曲线

    Figure  10.   The transmittance-error temperature fitting curves

    图  11   水蒸气含量-透射率拟合曲线

    Figure  11.   The water vapor content-transmittance fitting curve

    表  1   实验中使用设备的参数

    Table  1   Parameters of equipment used in the experiment

    Equipments Characteristic parameters
    Equipment type FOTRIC615C
    Measuring range/℃ −20 to 350
    Thermal infrared imager Image resolution 240×320
    Angle of field/° 30×22
    Minimum imaging distance/m > 0.5
    Humidity sensor Measuring range of humidity 0%RH-100%RH
    Heating piece Temperature/℃ 115
    Camera Image resolution 4624×2080
    Humidifier Spray volume/ ml/h 50
    Thermocouple Temperature Measuring range/℃ −50 to 1300
    Acrylic board experimental box Box size/cm 50×50×50
    (10 pieces)
    下载: 导出CSV

    表  2   实验环境参数

    Table  2   Experimental environment parameters

    Parameters Measured results
    Ambient temperature/℃ 22
    Atmospheric temperature/℃ 22
    Relative humidity/% 42
    Emissivity 0.97
    Distance/m 1
    下载: 导出CSV

    表  3   实验方案

    Table  3   Experimental scheme

    Experiment No. Focus Parameter compensation
    1 N N
    2 Y N
    3 Y Y
    下载: 导出CSV

    表  4   不同距离处三次实验相关参数

    Table  4   Relevant parameters of three experiments at different distances

    Distance/m Environmental transmittance Humidification time/min Experiment box size/cm
    1 0.918103 5 50×50×50
    (2 pieces)
    2 0.914009 12 50×50×50
    (4 pieces)
    3 0.936667 35 50×50×50
    (6 pieces)
    下载: 导出CSV

    表  5   大气平均透过率与海平面水蒸气含量的关系

    Table  5   Relationship between atmospheric mean transmittance and sea level water vapor content

    Wavelength/μm Water vapor content/%
    0.2 0.5 1 2 5 10 20 50 100
    3 to 5 0.9514 0.9257 0.8932 0.8504 0.7745 0.701 0.6174 0.5084 0.4347
    8 to 12 0.9968 0.9902 0.9838 0.9677 0.9451 0.8511 0.7267 0.4782 0.2229
    下载: 导出CSV

    表  6   距离4 m处测量温度补偿

    Table  6   Temperature compensation table measured at a distance of 4 m

    Transmissivity Measured temperature by thermocouple/℃ Measured temperature/℃ Relative errors% Measured temperature with compensation model/℃ Relative error/%
    0.500784 114.7 95.6 16.65 113.86 0.73
    0.519412 114.7 96.1 16.22 112.41 1.99
    0.526863 114.7 97.3 15.17 112.91 1.56
    0.530588 114.7 97.9 14.65 113.18 1.33
    0.541765 114.7 99.6 13.16 113.92 0.68
    0.549216 114.7 100.8 12.12 114.53 0.68
    0.552941 114.7 102.1 10.99 115.54 0.73
    0.560392 114.7 102.9 10.29 115.80 0.96
    0.575294 114.7 104.0 9.33 115.89 1.04
    0.582745 114.7 104.7 8.72 116.13 1.25
    0.597647 114.7 105.6 7.93 116.18 1.29
    0.623726 114.7 106.5 7.15 115.80 0.96
    0.638627 114.7 106.9 6.80 115.58 0.77
    0.675882 114.7 107.5 6.28 114.90 0.17
    0.687059 114.7 107.9 6.19 114.98 0.24
    0.690784 114.7 108.4 5.49 115.38 0.59
    0.716863 114.7 108.6 5.32 114.94 0.21
    0.728039 114.7 109.0 4.97 115.11 0.36
    0.739216 114.7 109.3 4.70 115.19 0.43
    0.772745 114.7 109.6 4.45 114.94 0.21
    0.780196 114.7 109.8 4.27 115.04 0.30
    0.81000 114.7 110.1 4.01 114.98 0.24
    0.828627 114.7 110.3 3.80 114.99 0.25
    0.855943 114.7 110.4 3.5 114.85 0.13
    下载: 导出CSV

    表  7   距离5 m处测量温度补偿

    Table  7   Temperature compensation table measured at a distance of 5 m

    Transmissivity Measured temperature
    by thermocouple/℃
    Measured temperature/℃ Relative errors% Measured temperature with compensation model/℃ Relative error/%
    0.508235 114.7 93.6 18.40 112.77 1.68
    0.519412 114.7 95.3 16.91 113.34 1.19
    0.526863 114.7 96.8 15.61 114.13 0.50
    0.538093 114.7 98.4 14.21 114.75 0.04
    0.552941 114.7 100.0 12.82 115.16 0.40
    0.579020 114.7 102.2 10.90 114.53 0.15
    0.582745 114.7 103.2 10.30 116.35 1.44
    0.590196 114.7 103.5 9.80 116.21 1.32
    0.593926 114.7 103.8 9.50 116.30 1.39
    0.605098 114.7 104.2 9.15 116.10 1.22
    0.612549 114.7 104.5 8.89 116.04 1.55
    0.646078 114.7 105.1 8.37 115.21 0.44
    0.657255 114.7 105.7 7.85 115.41 0.62
    0.679608 114.7 105.9 7.67 114.90 0.17
    0.687059 114.7 106.1 7.50 114.90 0.17
    0.694510 114.7 106.4 7.24 115.00 0.26
    0.720588 114.7 106.8 6.89 114.88 0.16
    0.728039 114.7 107.0 6.71 114.83 0.11
    0.735490 114.7 107.2 6.54 114.88 0.16
    0.746667 114.7 107.3 6.45 114.78 0.07
    0.776471 114.7 107.5 6.28 114.51 0.17
    0.783922 114.7 107.7 6.10 114.61 0.08
    0.795089 114.7 107.9 5.93 114.67 0.03
    0.824902 114.7 107.9 5.90 114.34 0.31
    下载: 导出CSV
  • [1] 王旭红, 李浩, 樊绍胜, 等. 基于改进SSD的电力设备红外图像异常自动检测方法[J]. 电工技术学报, 2020, 35(S1): 302-310. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS2020S1034.htm

    WANG Xuhong, LI Hao, FAN Shaosheng, et al. Infrared image anomaly automatic detection method for power equipment based on improved single shot multi box detection[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 302-310. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS2020S1034.htm

    [2] 张若岚, 张晋, 林宇, 等. 红外技术在航空发动机工作状态监控中的应用[J]. 红外技术, 2014, 36(2): 102-105. http://hwjs.nvir.cn/cn/article/id/hwjs201402003

    ZHANG Ruolan, ZHANG Jin, LIN Yu, et al. The application of infrared technique in jet engine working state inspection[J]. Infrared Technology, 2014, 36(2): 102-105. http://hwjs.nvir.cn/cn/article/id/hwjs201402003

    [3] 任照环, 许伟, 余蜀豫, 等. 重庆南川区雾气候特征及天气成因分析[J]. 成都信息工程大学学报, 2021, 36(2): 223-229. https://www.cnki.com.cn/Article/CJFDTOTAL-CDQX202102015.htm

    REN Zhaohuan, XU Wei, YU Shuyu, et al. Analysis on the climatic characteristics and weather causes of fog in Nanchang district of Chongqing [J]. Journal of Chengdu University of Information Technology, 2021, 36(2): 223-229. https://www.cnki.com.cn/Article/CJFDTOTAL-CDQX202102015.htm

    [4] 王海娟, 胡振琪, 夏清, 等. 距离和湿度对煤矸石山表面温度探测的影响研究[J]. 红外技术, 2015, 37(7): 618-623. http://hwjs.nvir.cn/cn/article/id/hwjs201507017

    WANG Haijuan, HU Zhenqi, XIA Qing, et al. Research on measuring distance and humidity effects on thermal infrared temperature measurement precision of temperature field of waste piles[J]. Infrared Technology, 2015, 37(7): 618-623. http://hwjs.nvir.cn/cn/article/id/hwjs201507017

    [5] 廖盼盼, 张佳民. 红外测温精度的影响因素及补偿方法的研究[J]. 红外技术, 2017, 39(2): 173-177. http://hwjs.nvir.cn/cn/article/id/hwjs201702012

    LIAO Panpan, ZHANG Jiamin. Research on influence factors for measuring and method of correction in infrared thermometer[J]. Infrared Technology, 2017, 39(2): 173-177. http://hwjs.nvir.cn/cn/article/id/hwjs201702012

    [6]

    PAN Dong, JIANG Zhaohui, Maldague Xavier, et al. Research on the influence of multiple interference factors on infrared temperature measurement[J]. IEEE Sensors Journal, 2021, 21(9): 10546-10555.

    [7] 陈一明. 红外热像仪测温精度的研究[D]. 秦皇岛: 燕山大学, 2017.

    CHEN Yiming. Study on Temperature Measurement Accuracy of Infrared Thermal Imager[D]. Qinhuangdao: Yanshan University, 2017.

    [8] 赵玥. 距离及视场角对近红外热像仪精度影响的研究[D]. 沈阳: 东北大学, 2012.

    ZHAO Yue. The Study About the Effect of the Distance and the Angle of Vision on the Precision of Temperature Measurement Using Infrared Thermal Imaging System[D]. Shenyang: Northeastern University, 2012.

    [9] 陆子凤. 红外热像仪的辐射定标和测温误差分析[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2010.

    LU Zifeng. Calibration and the Measurement Error Analysis of Infrared Imaging System for Temperature Measurement[D]. Changchun: Graduate School of the Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics), 2010.

    [10] 王婷, 徐军, 高旸, 等. 雾中红外辐射传输衰减特性分析[J]. 电光与控制, 2019, 26(3): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201903014.htm

    WANG Ting, XU Jun, GAO Yang, et al. Analysis on attenuation characteristics of infrared radiation transmitting in fog[J]. Electronics Optics & Control, 2019, 26(3): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201903014.htm

    [11]

    HE Kaiming, SUN Jian, TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 33(12): 1956-1963.

  • 期刊类型引用(1)

    1. 朱强,周维虎,陈晓梅,石俊凯,李冠楠. 高速实时近红外弱信号检测系统. 光学精密工程. 2022(24): 3116-3127 . 百度学术

    其他类型引用(2)

图(11)  /  表(7)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-05-08
  • 修回日期:  2022-07-04
  • 网络出版日期:  2024-06-23
  • 刊出日期:  2024-06-19

目录

    /

    返回文章
    返回
    x 关闭 永久关闭

    尊敬的专家、作者、读者:

    端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

    感谢您对本刊的支持!

    《红外技术》编辑部

    2024年6月6日