留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于红外锁相法缺陷深度检测的仿真

牛奕 吴锡 甘玲童 周德闯

牛奕, 吴锡, 甘玲童, 周德闯. 基于红外锁相法缺陷深度检测的仿真[J]. 红外技术, 2023, 45(10): 1059-1065.
引用本文: 牛奕, 吴锡, 甘玲童, 周德闯. 基于红外锁相法缺陷深度检测的仿真[J]. 红外技术, 2023, 45(10): 1059-1065.
NIU Yi, WU Xi, GAN Lingtong, ZHOU Dechuang. Simulation of Defect Depth Detection Based on Infrared Phase Locking[J]. Infrared Technology , 2023, 45(10): 1059-1065.
Citation: NIU Yi, WU Xi, GAN Lingtong, ZHOU Dechuang. Simulation of Defect Depth Detection Based on Infrared Phase Locking[J]. Infrared Technology , 2023, 45(10): 1059-1065.

基于红外锁相法缺陷深度检测的仿真

基金项目: 

国家重点研发计划 2017YFF0209704

国家自然科学基金 51706164

武汉理工大学自主创新研究基金 2018IVB056

详细信息
    作者简介:

    牛奕(1986-),男,博士,副教授,主要从事热安全科学机理,安全仿真与模拟的研究工作。E-mail:niuyi@whut.edu.cn

    通讯作者:

    周德闯(1980-),男,博士,高级工程师。主要从事低压火灾动力学,热安全仿真模拟等工作。E-mail:zhoudc@ustc.edu.cn

  • 中图分类号: TP274.52

Simulation of Defect Depth Detection Based on Infrared Phase Locking

  • 摘要: 隐藏在工件内部的粘贴结构缺陷具有隐蔽性和危险性,成为影响生产质量和运行安全的致命因素,运用红外无损检测技术可以对其缺陷进行检测和评估。本文通过仿真模拟,测得粘贴结构在不同缺陷深度以及涂层热扩散系数下的盲频率,研究了缺陷深度和涂层热扩散系数对盲频率的影响,同时利用拟合定量研究了盲频率与缺陷深度和涂层热扩散系数的关系。仿真结果表明,可以通过盲频率求得热扩散长度,进而求得缺陷深度的定量检测方法。
  • 图  1  红外锁相法检测原理示意图

    Figure  1.  Schematic diagram of detection principle of infrared phase-locked method

    图  2  红外锁相法的频率-相位差曲线

    Figure  2.  Frequency phase difference curve of infrared phase- locked method

    图  3  多层一维热传导模型示意图

    Figure  3.  Schematic diagram of multi-layer one-dimensional heat conduction model

    图  4  含有粘贴缺陷的二维模型示意图

    Figure  4.  Schematic diagram of two-dimensional model with paste defect

    图  5  粘贴缺陷的二维轴对称模型示意图

    Figure  5.  Schematic diagram of two-dimensional axisymmetric model of paste defect

    图  6  二维仿真模拟计算结果

    Figure  6.  Two dimensional simulation calculation results T/K

    图  7  缺陷区域和无缺陷区域表面温度随时间的变化

    Figure  7.  Variation of surface temperature of defect area and defect free area with time

    图  8  理论分析不同缺陷深度的盲频率

    Figure  8.  Theoretical analysis of blind frequencies of different defect depths fb/Hz

    图  9  理论分析和仿真模拟不同缺陷深度的盲频率对比

    Figure  9.  Comparison of blind frequencies of different defect depths through theoretical analysis and simulation

    图  10  理论分析不同的涂层热扩散系数的盲频率

    Figure  10.  Blind frequency of theoretical analysis of different coating thermal diffusivity fb/Hz

    图  11  理论分析和仿真模拟不同的涂层热扩散系数的盲频

    Figure  11.  Blind frequency comparison of different coating thermal diffusivity through theoretical analysis and simulation

    图  12  缺陷深度与热扩散长度的关系

    Figure  12.  Relationship between defect depth and thermal diffusion length

    图  13  不同工况下的缺陷深度与热扩散长度的比值

    Figure  13.  Ratio of defect depth to thermal diffusion length under different working conditions

    图  14  盲频率与涂层热扩散系数和缺陷深度的平方之比拟合

    Figure  14.  Fitting of blind frequency to the square ratio of coating thermal diffusion coefficient and defect depth

    表  1  材料热物性参数

    Table  1.   Material thermal property parameters

    Material Density/(kg/m3) Thermal conductivity/(W/(m∙K)) Heat capacity/(J/(kg∙K)) Thermal diffusivity/(m2/s)(×10-7)
    Steel 7850 44.78 460 124.01
    Glue 1200 0.35 270 10.80
    Air 1.225 0.0242 1006.4 196.29
    下载: 导出CSV

    表  2  缺陷深度与涂层热扩散系数的计算工况

    Table  2.   Calculation conditions of defect depth and coating thermal diffusion coefficient

    Thermal diffusivity/(m2/s) Defect depth/mm
    5×10-7 3 4 5 6 7 8 9 10
    1×10-6 3 4 5 6 7 8 9 10
    5×10-6 3 4 5 6 7 8 9 10
    1×10-5 3 4 5 6 7 8 9 10
    5×10-5 3 4 5 6 7 8 9 10
    下载: 导出CSV
  • [1] Baldan A. Adhesively-bonded joints in metallic alloys, polymers and composite materials: mechanical and environmental durability performance[J]. Journal of Materials Science, 2004, 39(15): 4729-4797. doi:  10.1023/B:JMSC.0000035317.87118.ab
    [2] 沈功田, 王尊祥. 红外检测技术的研究与发展现状[J]. 无损检测, 2020, 42(4): 1-9, 14. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC202004003.htm

    SHEN Gongtian, WANG Zunxiang Research and development status of infrared detection technology[J]. Nondestructive Testing, 2020, 42(4): 1-9, 14. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC202004003.htm
    [3] 樊丹丹. 基于红外热波的界面脱粘无损检测技术研究[D]. 太原: 中北大学, 2011.

    FAN Dandan. Research on Interface Debonding Nondestructive Testing Technology Based on Infrared Thermal Wave[D]. Taiyuan: Zhongbei University, 2011
    [4] 李浩然, 朱玉玉, 武丽. 红外热成像无损检测系统锁相热激励源的研制[J]. 自动化仪表, 2017, 38(10): 91-99. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYB201710022.htm

    LI Haoran, ZHU Yuyu, WU Li Development of phase locked thermal excitation source for infrared thermal imaging nondestructive testing system[J]. Automation Instrument, 2017, 38(10): 91-99. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYB201710022.htm
    [5] Kim Won Tae, Choi Man-Yon. NDT analysis of metal materials with internal defects using active infrared thermography method[J]. Key Engineering Materials, 2006, 3(21): 835-840.
    [6] BAI W, Wong B S. Evaluation of defects in composite plates under convective environments using lock-in thermography[J]. Measurementence & Technology, 2001, 12(2): 142.
    [7] TANG Qingju, LIU Junyan, WANG Yang, et al. Subsurface interfacial defects of metal materials testing using ultrasound infrared lock-in thermography[J]. Procedia Engineering, 2011, 16(3): 499-505
    [8] 张金玉, 马永超. 基于红外锁相法的涂层脱粘缺陷检测与识别[J]. 红外技术, 2016, 38(10): 894-898. http://hwjs.nvir.cn/article/id/hwjs201610015

    ZHANG Jinyu, MA Yongchao. Detection and identification of coating debonding defects based on infrared phase-locked method[J]. Infrared Technology, 2016, 38(10): 894-898. http://hwjs.nvir.cn/article/id/hwjs201610015
    [9] 刘俊岩, 戴景民, 王扬. 红外图像序列处理的锁相热成像理论与试验[J]. 红外与激光工程, 2009, 38(2): 346-351. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200902043.htm

    LIU Junyan, DAI Jingmin, WANG Yang. Theory and experiment of phase locked thermal imaging for infrared image sequence processing[J]. Infrared and Laser Engineering, 2009, 38(2): 346-351. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200902043.htm
    [10] 陈林, 杨立, 范春利, 等. 红外锁相无损检测及其数值模拟[J]. 红外技术, 2013, 35(2): 119-122. http://hwjs.nvir.cn/article/id/hwjs201302013

    CHEN Lin, YANG Li, FAN Chunli, et al. Infrared phase locked nondestructive testing and its numerical simulation[J]. Infrared Technology, 2013, 35(2): 119-122. http://hwjs.nvir.cn/article/id/hwjs201302013
    [11] 杨如意. 红外成像无损检测的缺陷定量化分析与应用研究[D]. 南京: 南京航空航天大学, 2009.

    YANG Ruyi. Quantitative Analysis and Application of Defects in Infrared Imaging Nondestructive Testing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.
    [12] 田裕鹏. 红外辐射成像无损检测关键技术研究[D]. 南京: 南京航空航天大学, 2009.

    TIAN Yupeng. Research on Key Technologies of Infrared Radiation Imaging Nondestructive Testing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.
    [13] 沈剑峰, 施柏煊. 激光诱导热波差分法分层检测金属次表面缺陷[J]. 光电子·激光, 2005(9): 1085-1088. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ200509017.htm

    SHEN Jianfeng, SHI Baixuan. Layered detection of metal subsurface defects by laser induced thermal wave difference method[J]. Optoelectronics Laser, 2005(9): 1085-1088. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ200509017.htm
    [14] 钱鹏, 陆金桂. 基于PSO-BP神经网络的红外无损检测缺陷定量识别[J]. 南京工业大学学报: 自然科学版, 2019, 41(4): 501-507. https://www.cnki.com.cn/Article/CJFDTOTAL-NHXB201904016.htm

    QIAN Peng, LU Jingui. Quantitative identification of defects in infrared nondestructive testing based on PSO-BP neural network[J]. Journal of Nanjing University of Technology (NATURAL SCIENCE EDITION), 2019, 41(4): 501-507. https://www.cnki.com.cn/Article/CJFDTOTAL-NHXB201904016.htm
    [15] 郭兴旺, 董淑琴. 基于小波变换的红外热波无损检测融合算法[J]. 光学技术, 2008(5): 659-663. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS200805006.htm

    GUO Xingwang, DONG Shuqin. Fusion algorithm of infrared thermal wave nondestructive testing based on wavelet transform[J]. Optical Technology, 2008(5): 659-663. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS200805006.htm
    [16] 周辉, 钱美丽, 冯金秋, 等. 建筑材料热物理性能与数据手册[M]. 北京: 中国建筑工业出版社, 2010.

    ZHOU Hui, QIAN Meili, FENG Jinqiu, et al. Thermophysical Properties and Data Handbook of Building Materials[M]. Beijing: China Building Industry Press, 2010.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  10
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-06
  • 修回日期:  2022-05-25
  • 刊出日期:  2023-10-20

目录

    /

    返回文章
    返回