Simulation of Defect Depth Detection Based on Infrared Phase Locking
-
摘要: 隐藏在工件内部的粘贴结构缺陷具有隐蔽性和危险性,成为影响生产质量和运行安全的致命因素,运用红外无损检测技术可以对其缺陷进行检测和评估。本文通过仿真模拟,测得粘贴结构在不同缺陷深度以及涂层热扩散系数下的盲频率,研究了缺陷深度和涂层热扩散系数对盲频率的影响,同时利用拟合定量研究了盲频率与缺陷深度和涂层热扩散系数的关系。仿真结果表明,可以通过盲频率求得热扩散长度,进而求得缺陷深度的定量检测方法。Abstract: Defects in the paste structure inside a workpiece act as a crucial factor affecting production quality and operational safety, and infrared non-destructive testing can be used to detect and evaluate defects. In this study, the blind frequency of the paste structure at different defect depths and thermal diffusivity of the coating were measured through simulations, and the influence of the defect depth and thermal diffusivity of the coating on the blind frequency was studied. Relationship between the defect depth and thermal diffusivity of the coatings. The simulation results show that the thermal diffusion length can be obtained using the blind frequency, and a quantitative detection method for the defect depth can be obtained.
-
表 1 材料热物性参数
Table 1. Material thermal property parameters
Material Density/(kg/m3) Thermal conductivity/(W/(m∙K)) Heat capacity/(J/(kg∙K)) Thermal diffusivity/(m2/s)(×10-7) Steel 7850 44.78 460 124.01 Glue 1200 0.35 270 10.80 Air 1.225 0.0242 1006.4 196.29 表 2 缺陷深度与涂层热扩散系数的计算工况
Table 2. Calculation conditions of defect depth and coating thermal diffusion coefficient
Thermal diffusivity/(m2/s) Defect depth/mm 5×10-7 3 4 5 6 7 8 9 10 1×10-6 3 4 5 6 7 8 9 10 5×10-6 3 4 5 6 7 8 9 10 1×10-5 3 4 5 6 7 8 9 10 5×10-5 3 4 5 6 7 8 9 10 -
[1] Baldan A. Adhesively-bonded joints in metallic alloys, polymers and composite materials: mechanical and environmental durability performance[J]. Journal of Materials Science, 2004, 39(15): 4729-4797. doi: 10.1023/B:JMSC.0000035317.87118.ab [2] 沈功田, 王尊祥. 红外检测技术的研究与发展现状[J]. 无损检测, 2020, 42(4): 1-9, 14. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC202004003.htmSHEN Gongtian, WANG Zunxiang Research and development status of infrared detection technology[J]. Nondestructive Testing, 2020, 42(4): 1-9, 14. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC202004003.htm [3] 樊丹丹. 基于红外热波的界面脱粘无损检测技术研究[D]. 太原: 中北大学, 2011.FAN Dandan. Research on Interface Debonding Nondestructive Testing Technology Based on Infrared Thermal Wave[D]. Taiyuan: Zhongbei University, 2011 [4] 李浩然, 朱玉玉, 武丽. 红外热成像无损检测系统锁相热激励源的研制[J]. 自动化仪表, 2017, 38(10): 91-99. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYB201710022.htmLI Haoran, ZHU Yuyu, WU Li Development of phase locked thermal excitation source for infrared thermal imaging nondestructive testing system[J]. Automation Instrument, 2017, 38(10): 91-99. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYB201710022.htm [5] Kim Won Tae, Choi Man-Yon. NDT analysis of metal materials with internal defects using active infrared thermography method[J]. Key Engineering Materials, 2006, 3(21): 835-840. [6] BAI W, Wong B S. Evaluation of defects in composite plates under convective environments using lock-in thermography[J]. Measurementence & Technology, 2001, 12(2): 142. [7] TANG Qingju, LIU Junyan, WANG Yang, et al. Subsurface interfacial defects of metal materials testing using ultrasound infrared lock-in thermography[J]. Procedia Engineering, 2011, 16(3): 499-505 [8] 张金玉, 马永超. 基于红外锁相法的涂层脱粘缺陷检测与识别[J]. 红外技术, 2016, 38(10): 894-898. http://hwjs.nvir.cn/article/id/hwjs201610015ZHANG Jinyu, MA Yongchao. Detection and identification of coating debonding defects based on infrared phase-locked method[J]. Infrared Technology, 2016, 38(10): 894-898. http://hwjs.nvir.cn/article/id/hwjs201610015 [9] 刘俊岩, 戴景民, 王扬. 红外图像序列处理的锁相热成像理论与试验[J]. 红外与激光工程, 2009, 38(2): 346-351. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200902043.htmLIU Junyan, DAI Jingmin, WANG Yang. Theory and experiment of phase locked thermal imaging for infrared image sequence processing[J]. Infrared and Laser Engineering, 2009, 38(2): 346-351. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200902043.htm [10] 陈林, 杨立, 范春利, 等. 红外锁相无损检测及其数值模拟[J]. 红外技术, 2013, 35(2): 119-122. http://hwjs.nvir.cn/article/id/hwjs201302013CHEN Lin, YANG Li, FAN Chunli, et al. Infrared phase locked nondestructive testing and its numerical simulation[J]. Infrared Technology, 2013, 35(2): 119-122. http://hwjs.nvir.cn/article/id/hwjs201302013 [11] 杨如意. 红外成像无损检测的缺陷定量化分析与应用研究[D]. 南京: 南京航空航天大学, 2009.YANG Ruyi. Quantitative Analysis and Application of Defects in Infrared Imaging Nondestructive Testing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. [12] 田裕鹏. 红外辐射成像无损检测关键技术研究[D]. 南京: 南京航空航天大学, 2009.TIAN Yupeng. Research on Key Technologies of Infrared Radiation Imaging Nondestructive Testing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. [13] 沈剑峰, 施柏煊. 激光诱导热波差分法分层检测金属次表面缺陷[J]. 光电子·激光, 2005(9): 1085-1088. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ200509017.htmSHEN Jianfeng, SHI Baixuan. Layered detection of metal subsurface defects by laser induced thermal wave difference method[J]. Optoelectronics Laser, 2005(9): 1085-1088. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ200509017.htm [14] 钱鹏, 陆金桂. 基于PSO-BP神经网络的红外无损检测缺陷定量识别[J]. 南京工业大学学报: 自然科学版, 2019, 41(4): 501-507. https://www.cnki.com.cn/Article/CJFDTOTAL-NHXB201904016.htmQIAN Peng, LU Jingui. Quantitative identification of defects in infrared nondestructive testing based on PSO-BP neural network[J]. Journal of Nanjing University of Technology (NATURAL SCIENCE EDITION), 2019, 41(4): 501-507. https://www.cnki.com.cn/Article/CJFDTOTAL-NHXB201904016.htm [15] 郭兴旺, 董淑琴. 基于小波变换的红外热波无损检测融合算法[J]. 光学技术, 2008(5): 659-663. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS200805006.htmGUO Xingwang, DONG Shuqin. Fusion algorithm of infrared thermal wave nondestructive testing based on wavelet transform[J]. Optical Technology, 2008(5): 659-663. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS200805006.htm [16] 周辉, 钱美丽, 冯金秋, 等. 建筑材料热物理性能与数据手册[M]. 北京: 中国建筑工业出版社, 2010.ZHOU Hui, QIAN Meili, FENG Jinqiu, et al. Thermophysical Properties and Data Handbook of Building Materials[M]. Beijing: China Building Industry Press, 2010. -