面向双模态红外图像差异的拟态融合方法

Mimic Fusion Method for Differences in Dual-Mode Infrared Images

  • 摘要: 针对传统融合方法无法根据双模态红外图像差异特征的不同选择有效的融合策略的问题,提出了一种面向红外光强与偏振图像差异的拟态融合方法。首先计算图像特征差异度对差异特征进行粗筛,制定主差异特征类型的选取规则来确定图像组的主差异特征;然后构造特征融合度,以建立差异特征与拟态变元集中各层变元的映射,确定变元分层结构;最后在变元分层结构选择主差异特征类型的各层变元,比较不同拟态结构变元组合时差异特征的特征融合度,确定其最大值占比最高的拟态结构,形成变体。实验结果表明,经主观分析本文方法结果的视觉效果比对比方法结果的效果更优;经客观评价本文方法结果均为有效融合,因此本文方法实现了对融合策略的自适应选择并提高了图像的融合质量。

     

    Abstract: Traditional fusion methods cannot select an effective fusion strategy based on the different characteristics of dual-mode infrared images. A mimic fusion method for the difference between the infrared intensity and polarization images was developed in this study. First, the degree of difference between image features was calculated to roughly screen the difference features, and the selection rules of the main difference feature types were formulated to determine the main difference features of the image groups. Next, the degree of feature fusion was constructed to establish the mapping between the difference features and variables in each layer of the mimic variable set and to determine the hierarchical structure of the variables. Finally, in the hierarchical structure of the variables, the variables of each layer of the main difference feature type were selected. The degrees of feature fusion of the difference features between combined variables of different mimic structures were compared to determine the mimic structure with the highest proportion of its maximum value and form a variant. The experimental results show that the visual effect of the proposed method was better than that of the comparison method after a subjective analysis. After objective evaluation, the results obtained using the proposed method indicate effective fusion. Therefore, this method realizes adaptive selection of the fusion strategy and improves image fusion quality.

     

/

返回文章
返回