高分辨率探测器短中波红外滤光片的设计及其光谱特性研究

陈永, 陈昕, 张一凡, 胡海波, 谈婷, 吕玮东, 周吉

陈永, 陈昕, 张一凡, 胡海波, 谈婷, 吕玮东, 周吉. 高分辨率探测器短中波红外滤光片的设计及其光谱特性研究[J]. 红外技术, 2024, 46(5): 592-598.
引用本文: 陈永, 陈昕, 张一凡, 胡海波, 谈婷, 吕玮东, 周吉. 高分辨率探测器短中波红外滤光片的设计及其光谱特性研究[J]. 红外技术, 2024, 46(5): 592-598.
CHEN Yong, CHEN Xin, ZHANG Yifan, HU Haibo, TAN Ting, LYU Weidong, ZHOU Ji. Design and Spectral Analysis of Short and Medium-Wave Infrared Filter for High Resolution Detectors[J]. Infrared Technology , 2024, 46(5): 592-598.
Citation: CHEN Yong, CHEN Xin, ZHANG Yifan, HU Haibo, TAN Ting, LYU Weidong, ZHOU Ji. Design and Spectral Analysis of Short and Medium-Wave Infrared Filter for High Resolution Detectors[J]. Infrared Technology , 2024, 46(5): 592-598.

高分辨率探测器短中波红外滤光片的设计及其光谱特性研究

详细信息
    作者简介:

    陈永(1989-),硕士,主要从事空间光学滤光片技术方面的研究。E-mail: 475028635@qq.com

  • 中图分类号: TN27

Design and Spectral Analysis of Short and Medium-Wave Infrared Filter for High Resolution Detectors

  • 摘要:

    短中波红外滤光片是航天光学遥感相机上的关键器件之一。高分辨率探测器的光谱响应由滤光片的光谱特性决定,其中短中波红外占有很大比重,传统方式制备的短中波红外滤光片与理论值存在差距,使得短中波红外滤光片发生光谱角漂或温漂等现象,在高分辨率探测器中形成高频和低频光谱混合叠加导致复原光谱失真。本文提出了一种高透过率低漂移高分辨率探测器短中波红外滤光片的设计及研制方法。为了达到短中波红外滤光片特定波长滤光特性的要求(在3.5~4.1 μm波段范围内实现98%以上透过率,在2.4~3.35 μm、4.25~6.4 μm两个波段范围内实现截止),以Si材料为滤光片的基底材料,采用模拟染色体遗传交叉算法以带通滤光高低反射率膜堆结构进行了结构迭代设计,薄膜的高折射率材料采用TiO2,低折射率材料采用SiO2,该结构设计使得膜层数量大为减少,通过温漂测试、角漂测试、光谱特性分析及面形测试,短中波红外滤光片达到了前后双波段截止、高通带透过率的目标。环境测试试验表明,短中波红外滤光片膜层与基底材料匹配性适宜、膜层稳定性较高,适用于空间严酷的温度变化、高能粒子辐照环境。

    Abstract:

    The short- and medium-wave infrared filter is a key device in the aerospace optical remote sensing camera. The spectral response of the high-resolution detector is determined by the spectral characteristics of the short- and medium-wave infrared filter. Owing to the gap between the preparation level and theoretical values, the phenomenon of the spectral angle drift or temperature drift occurs, and the mixed superposition of high- and low-frequency spectra is formed in the high-resolution detector, resulting in restoration spectral distortion. This study introduces a design method for a working band of 3.5 μm to 4.1 μm and the development of a short- and medium-wave infrared filter for a high resolution detector. To realize the characteristics of dual band cut-off color separation on the Si substrate (cut-off band wavelength 2.4 μm to 3.35 μm and 4.25 μm to 6.4 μm; transmittance of over 98% in passband wavelength 3.5 μm to 4.1 μm), the film system structure of the F-P band-pass filter is used as the initial structure, which effectively reduces the number of film layers compared with the conventional design concept. The high refractive material of the film is TiO2 and the low refractive material is SiO2, to achieve dual band cut-off. The short- and medium-wave infrared filter achieves the design goal and has the characteristics of dual band cut-off and high band transmittance. In the environmental test, the short- and medium-wave infrared filter exhibits significant stability, and the matching degree between the films is appropriate. The short- and medium-wave infrared filter can be applied in some extreme cases.

  • 滤光片是作为滤光和选择谱线的器件在航天光学遥感探测器中起着非常重要的作用[1-2]。短中波红外光的探测对于国防安全领域遥感的意义重大[3]。滤光片的设计参数直接影响成像质量,滤光片的环境耐久性、可靠性决定了探测器上天后的工作状态和使用寿命[4]。目前主流的滤光片多为多光谱滤光片,膜层数量多、膜系复杂。高分辨率探测器的光谱响应由短中波红外滤光片的光谱特性决定,短中波红外滤光片的结构设计是否合理、光学性能是否满足设计指标、环境耐受性及稳定性对整个光学系统来说都至关重要[5-6]。短中波红外滤光片在未来红外遥感相机里的应用将越来越多。

    由于短中波红外滤光片的制备水平与理论值存在差距,会发生光谱角漂或温漂等现象,在高分辨率探测器中形成高频和低频光谱混合叠加导致复原光谱失真[7]。20世纪90年代,Reynard等人设计出了可调整中间层的双层膜系结构,该结构能够叠加,可以实现消偏振,用以制备消偏振滤光片[8]。进入21世纪后,顾培夫等人系统研究了滤光片的中心波长问题,在膜层材料的分布上进行了大量实验,最终攻克了温度对中心波长影响的难题,使得温度不再是影响波长的因素[9]。滤光片的加工周期长、成本高,尤其短中波红外滤光片,按目前的生产工艺,成品率很低,时间成本极高[10-11]。因此滤光片在设计初期就应该全面考虑光学系统、结构、加工工艺、配准粘接中的各种影响因素,确保后续的顺利加工和安装使用。为了更好地满足高分辨率探测器短中波红外探测需求,本文在薄膜光学理论的基础上,根据短中波红外波段的特点,设计了短中波红外滤光片膜系结构,采用在F-P型膜系结构进行初始化设计,通过电子束加热蒸发的方式,配合离子辅助淀积技术,Si材料为基底,高折射率层材料采用TiO2,低折射率材料采用SiO2,最终达到通带前后双波段截止的效果。

    本文提出了一种优化TiO2/SiO2多层膜系的方法,以满足宽带通矩形波带通滤光膜的通带宽度、矩形度及通带透过率的要求。通过将不同波长的多腔F-P型窄带滤光膜错峰连接作为基础膜系,增大通带宽度的同时避免了严重影响通带透过率的问题。为了提高通带透过率,需要优化各层厚度。同时,为保证矩形度,膜系优化目标设定时应增大截止带的权重。TiO2/SiO2多层膜周期设为27,其膜层密度、界面粗糙度、扩散层等参数均由表征TiO2/SiO2周期多层膜结果获得[12-13]。这种设计方法可以有效地提高宽带通矩形波带通滤光膜的性能,为相关领域的研究和应用提供了新的思路和技术支持。

    SiO2常温条件下,物理化学性质较为稳定,并且在氧化物膜料中折射率最低(约1.45~1.47),在150 nm~8.5 μm波段范围内透明度均远胜于其他氧化物材料[14]。SiO2薄膜材料的折射率与光子能量的关系曲线如图 1所示[15]

    图  1  光子能量与SiO2折射率关系曲线
    Figure  1.  Curve of the relationship between photon energy and SiO2 refractive index

    TiO2薄膜材料与其他氧化物薄膜材料相比拥有相对较高的折射率(约为2.2~2.5)、致密度好、化学性质稳定、与基体材料粘接力强、强度高,从可见到红外谱段范围内很高的透过率[16-17]。因此常与SiO2搭配成为高折射率材料组合。光子能量与TiO2薄膜材料折射率的关系如图 2所示。

    图  2  光子能量与TiO2薄膜材料折射率及吸收率的关系曲线
    Figure  2.  Relationship curves between photon energy and refractive index and absorption index of TiO2 thin film material

    首先对各周期中扩散层TiO2/SiO2的膜厚进行设定,包括TiO2层在SiO2层的扩散厚度和SiO2层在TiO2层的扩散厚度。然后,通过时间控制膜厚且控制精度为1 s的镀膜系统对沉积速率进行定标,得到各靶位的沉积速率。接着,以TiO2和SiO2的膜厚沉积时间为优化参数,基于进化算法(evolutionary algorithms)结合各靶位的沉积速率建立多层膜膜系设计算法。

    该算法的输入参数包括种群规模N=27、初始进化代数g=1、个体基因位数n=118、交叉概率Pc=0.92、变异概率PM=0.16以及进化的最大代数为20000。同时,为了提高膜系设计的效率和精度,本文将宽角度TiO2/SiO2多层膜中TiO2层沉积时间的搜索范围设定为[2, 6],SiO2层沉积时间的搜索范围设定为[1, 7],而宽光谱TiO2/SiO2多层膜中TiO2层沉积时间和SiO2层沉积时间的搜索范围分别设定为[3, 9]和[2, 10]。

    为多层膜的沉积时间设定实数编码,随机生成一个初始种群G(g),用于表征多层膜的沉积时间。

    使用适应度函数来评估G(g)中各个个体的适应性,并保留最优多层膜沉积时间个体。在计算个体适应性的过程中,针对多层膜设计,输入每层膜的厚度以及以沉积速率为公差的多层膜系列。在这里,将TiO2膜与SiO2膜各层的膜厚转化为沉积速率的设计时间整数倍与成膜膜厚之和。

    最后,多层设计意味着所采用的沉积时间为相应搜索范围中的整数时间,镀膜系统的时间控制精度为1 s。

    具体来说,SiO2层和TiO2层的膜厚分别为:

    $$ {d_{{\text{Si}}{{\text{O}}_{\text{2}}}}} = {d'_{{\text{Si}}{{\text{O}}_{\text{2}}}}} + {t_{{\text{Si}}{{\text{O}}_{\text{2}}}}} \cdot {v_{{\text{Si}}{{\text{O}}_{\text{2}}}}} $$ (1)
    $$ {d_{{\text{Ti}}{{\text{O}}_{\text{2}}}}} = {d'_{{\text{Ti}}{{\text{O}}_{\text{2}}}}} + {t_{{\text{Ti}}{{\text{O}}_{\text{2}}}}} \cdot {v_{{\text{Ti}}{{\text{O}}_{\text{2}}}}} $$ (2)

    式中:d′、vt分别为成膜膜厚、沉积速率、沉积时间。

    运用模拟染色体遗传交叉算法[18],两父代个体的第i个染色体为Xp1Xp2,与子代个体的相应染色体Xc的关系为:

    $$ X_c= \begin{cases}0.5 \cdot\left[\left(1+\beta_i\right) \cdot X_{\mathrm{p} 1}+\left(1-\beta_i\right) \cdot X_{\mathrm{p} 2}\right], & \text { rand } \geq 0.5 \\ 0.5 \cdot\left[\left(1+\beta_i\right) \cdot X_{\mathrm{p} 1}+\left(1+\beta_i\right) \cdot X_{\mathrm{p} 2}\right], & \text { rand }<0.5\end{cases} $$ (3)
    $$ \beta_i= \begin{cases}\left(2 u_i\right)^{\frac{1}{1+\eta_c}}, & u_i \leq 0.5 \\ \left(\frac{1}{2\left(1-u_i\right)}\right)^{\frac{1}{1+\eta_c}}, & u_i>0.5\end{cases} $$ (4)

    式中:ui为随机数;ηc为交叉算子。

    父代个体的第i个染色体Xp与子代染色体Xm关系为:

    $$ X_{\mathrm{m}}= \begin{cases}X_p, & P_{\mathrm{m}} \leq \text { rand } \\ X_p+(u-l) \cdot \sigma, & P_{\mathrm{m}}>\text { rand }\end{cases} $$ (5)

    式中:Pm为变异概率;ul分别是染色体相应变量搜索范围的最大值和最小值,σ值为:

    $$ \sigma=\left\{\begin{array}{cl} (2 \cdot \text { rand })^{\frac{1}{1+\eta_{\mathrm{m}}}}, & \text { rand }<0.5 \\ 1-2(1-\text { rand })^{\frac{1}{1+\eta_{\mathrm{m}}}}, & \text { rand } \geq 0.5 \end{array}\right. $$ (6)

    式中:ηm为变异算子。

    设计目标为入射角带宽0°~12°,截止带波长2.4~3.35 μm、4.25~6.4 μm,通带波长3.5~4.1 μm的非周期宽角度TiO2/SiO2多层膜膜系,其透过率需高于95%。需要强调的是,在宽角度TiO2/SiO2多层膜的多层设计中,初始参数包括每堆栈周期数和各堆栈膜层厚度,并对其进行实数编码。通过多层膜系设计优化,获取最优堆栈参数,从而实现膜系的最优化设计。最终得到的膜系结构为:

    Si|(0.98H0.98L)31.96H(0.98L0.98H)31.44L(1.02H1.02L) 32.04H(1.02L1.02H)3|Air,其中TiO2为H层,SiO2为L层。

    采用高通量电子束(90 A/cm2℃)蒸镀法加热高电阻高熔点金属钨圈,表面电子的动能(4.5 eV)大于其束缚能而逃逸出来,在匀强电场(10 kV)中加速,当速度达到6×104 km/s时,开始轰击目标原料,实现原料蒸发移动,在基板表面附近降温冷却形成薄膜结构。为了避免膜材料蒸发过程中,因自由扩散而对电子源造成污染,改进电子源布局,将电子源设置在低于装膜料的坩埚底面位置,当电子从电子源逃逸到达坩埚上方后,利用强力磁场对电子束方向进行转弯,打在膜料上进行蒸发[19-21]。电子枪工作原理如图 3所示。膜系结构的光学特性高度依赖于膜层厚度,因此对膜层厚度精度要求极为严格,所以对膜层的监控成为了膜层制备过程中一项关键项目,本实验采用监控设备为晶振Infcon监控系统。本实验的真空度为1×10-4 Pa,基底维持温度为100℃±0.5℃。

    图  3  蒸发用的电子枪蒸发原理
    Figure  3.  Principle of electron gun evaporation for evaporation

    80 K和293 K两种测试温度条件下的3.1~4.5 μm短中波红外滤光片温漂光谱图,如图 4所示。由图可知,随着温度升高,光谱曲线向长波方向偏移。通过曲线对比可以看出,温度对滤光片峰值透过率、光谱带宽、图形矩形度等光谱特性的影响均在0.7%以内,还可以从图中分析得到前截止波长λ1~后截止波长λ2一直在透过谱段3.4~4.2 μm范围内,其透过率在98%以上。光谱曲线前后均维持着矩形,没有明显的变化。表 1中列出了80 K时相较293 K入射λ1温漂差值为0.016 μm,相较293 K入射λ2角漂差值为0.014 μm,最大偏差小于0.6%。

    图  4  短中波红外滤光片温漂测试结果
    Figure  4.  Temperature drift test results of short and medium wave infrared filters
    表  1  短中波红外滤光片前后截止波长温漂测试结果
    Table  1.  Temperature drift test results of cut-off wavelengths before and after short and medium wave infrared filters
    Test temperature/K Front cutoff wavelength λ1/μm Post cutoff wavelength λ2/μm
    293 3.538 4.128
    80 3.522 4.114
    下载: 导出CSV 
    | 显示表格

    图 5所示为0°、6°和11.9°三种测试角度条件下的3.1~4.5 μm范围短中波红外滤光片角漂光谱图。由图可知,随着角度的增加,光谱曲线向短波方向偏移。通过曲线对比可以看出,角度变化对滤光片峰值透过率、光谱带宽、图形矩形度等光谱特性的影响均在0.5%以内。还可以从图中分析得到λ1~λ2一直在透过谱段范围内,其透过率在96%以上。光谱曲线前后均维持着矩形,没有明显的变化。表 2中在6°时相较0°入射λ1角漂差值为0,相较0°入射λ2角漂差值为0.004 μm,在11.9°时相较0°入射λ1角漂差值为0.007 μm,相较0°入射λ2角漂差值为0.011 μm,最大偏差小于0.3%。

    图  5  短中波红外滤光片角漂测试结果
    Figure  5.  Angle drift test results of short and medium wave infrared filter
    表  2  短中波红外滤光片前后截止波长角漂测试结果
    Table  2.  Results of cut-off wavelength angle drift test before and after short and medium wave infrared filters
    Testing angle/° Front cutoff wavelengthλ1/μm Post cutoff wavelength λ2/μm
    0 3.535 4.126
    6 3.535 4.122
    11.9 3.528 4.115
    下载: 导出CSV 
    | 显示表格

    图 6表 3所示为短中波红外滤光片的光谱图,从293 K和80 K两种温度条件下的测试曲线可以看出,在Si基底上制备的红外短中波滤光片,在3.5~4.1 μm处的平均透过率均在90%以上,其中80 K条件下比293 K更高,达95.1%,在截止区域外透过率T<2%,且光谱曲线的矩形度明显较好。光谱在透过率上升和下降的区域斜率都很陡峭。

    图  6  短中波红外滤光片光谱透过率曲线
    Figure  6.  Spectral transmittance curve of short and medium wave infrared filter
    表  3  短中波红外滤光片光谱测试结果
    Table  3.  Spectral test results of short and medium wave infrared filters
    Test temperature/K 2.4~3.5 μm Average transmittance/% 3.5~4.1 μm Average transmittance/% 4.1~6.4 μm Average transmittance/%
    293 0.63 98.1 0.13
    80 0.63 98.7 0.20
    下载: 导出CSV 
    | 显示表格

    图 7表 4所示,从短中波红外滤光片A/B面形精度的比较可以看出,其峰谷值及均方根值仍然保持在一个较高的精度范围内,滤光片A/B表面膜层的整体性能相对较好。

    图  7  短中波红外滤光片A/B面形
    Figure  7.  Short medium wave infrared filter A/B surface shape
    表  4  短中波红外滤光片面型检测结果
    Table  4.  Surface shape detection results of short and medium wave infrared filters
    Face Peak valley value/μm Root mean square value/μm
    A 0.304 0.035
    B 0.454 0.051
    下载: 导出CSV 
    | 显示表格

    短中波红外滤光片空间环境试验依据航天工业标准[22]开展工作,并针对高分辨率探测器特有的考核情况和使用年限进行了加严考核。试验采用的考核条件和测试结果如表 5所示。

    表  5  短中波红外滤光片空间环境试验结果
    Table  5.  Space environment test results of short and medium wave infrared filters
    Pilot project Test condition Test results
    Immersion test Soak in purified water at 45℃ for 8 h. Pass
    Adhesion test Film adhesion strength is tested by means of a polyester tape, in which the adhesive side of a standard polyester tape is pasted on the surface of the film to avoid air bubbles, and the peeling area of the film is tested by pulling up on one end of the tape. Pass
    Humidity test In a constant temperature and humidity chamber at a constant temperature of 45℃ and a relative humidity of more than 95% for 72 h. The temperature and humidity of the chamber were determined by the temperature and humidity of the chamber and the relative humidity of the chamber. Pass
    Temperature alternation test The temperature was kept at 45℃ for 30 min, then cooled down at a rate of 3℃/h to -10℃, then stopped cooling down, kept for 30 min, and then warmed up at a rate of 3℃/h to 45℃. Finish into a cycle, a total of 5 cycles. Pass
    Low temperature impact test Place the filter at room temperature into a container filled with liquid nitrogen and let it stand for 5 min. remove it and warm it up naturally, and keep it at room temperature for 15 min to complete a cycle, and carry out a total of 5 cycles. Pass
    UV irradiation test The infrared filter is located at the entrance of the optical path, where the UV irradiation is derived from direct solar irradiation and solar irradiation reflected by the Earth's surface and attenuated by several optical elements, and is analysed for stray light to obtain a 5200 ESH dose. Pass
    Co60 γ irradiation test Total radiation dose of 40 krad(Si) based on 700 km of track, 8 years of lifetime, with a design margin. Pass
    下载: 导出CSV 
    | 显示表格

    本文提出了一种高透过率低漂移高分辨率探测器短中波红外滤光片的设计及研制方法。其光谱曲线达到了预期的目标。为了达到Si基底上的滤光膜有双波段截止分色的特性(前截止谱段波长范围在2.4~3.35 μm、后截止谱段波长范围为4.25~6.4 μm,通带波长3.5~4.1 μm),透过率在98%以上,角漂最大偏差小于0.6%,采用模拟染色体遗传交叉算法以带通滤光高低反射率膜堆结构进行了结构迭代设计,通过电子束加热蒸发的方式,配合离子辅助淀积技术,Si材料为基底,高折射率层材料采用TiO2,低折射率材料采用SiO2,最终达到通带前后双波段截止的效果。短中波红外滤光片各项性能满足了设计目标,具有双波段截止、高透过率的特点。通过环境测试,短中波红外滤光片展现了优异的结构稳定性,表明膜层间匹配度合适。该短中波红外滤光片能够较好地运用在极端空间环境条件下。

  • 图  1   光子能量与SiO2折射率关系曲线

    Figure  1.   Curve of the relationship between photon energy and SiO2 refractive index

    图  2   光子能量与TiO2薄膜材料折射率及吸收率的关系曲线

    Figure  2.   Relationship curves between photon energy and refractive index and absorption index of TiO2 thin film material

    图  3   蒸发用的电子枪蒸发原理

    Figure  3.   Principle of electron gun evaporation for evaporation

    图  4   短中波红外滤光片温漂测试结果

    Figure  4.   Temperature drift test results of short and medium wave infrared filters

    图  5   短中波红外滤光片角漂测试结果

    Figure  5.   Angle drift test results of short and medium wave infrared filter

    图  6   短中波红外滤光片光谱透过率曲线

    Figure  6.   Spectral transmittance curve of short and medium wave infrared filter

    图  7   短中波红外滤光片A/B面形

    Figure  7.   Short medium wave infrared filter A/B surface shape

    表  1   短中波红外滤光片前后截止波长温漂测试结果

    Table  1   Temperature drift test results of cut-off wavelengths before and after short and medium wave infrared filters

    Test temperature/K Front cutoff wavelength λ1/μm Post cutoff wavelength λ2/μm
    293 3.538 4.128
    80 3.522 4.114
    下载: 导出CSV

    表  2   短中波红外滤光片前后截止波长角漂测试结果

    Table  2   Results of cut-off wavelength angle drift test before and after short and medium wave infrared filters

    Testing angle/° Front cutoff wavelengthλ1/μm Post cutoff wavelength λ2/μm
    0 3.535 4.126
    6 3.535 4.122
    11.9 3.528 4.115
    下载: 导出CSV

    表  3   短中波红外滤光片光谱测试结果

    Table  3   Spectral test results of short and medium wave infrared filters

    Test temperature/K 2.4~3.5 μm Average transmittance/% 3.5~4.1 μm Average transmittance/% 4.1~6.4 μm Average transmittance/%
    293 0.63 98.1 0.13
    80 0.63 98.7 0.20
    下载: 导出CSV

    表  4   短中波红外滤光片面型检测结果

    Table  4   Surface shape detection results of short and medium wave infrared filters

    Face Peak valley value/μm Root mean square value/μm
    A 0.304 0.035
    B 0.454 0.051
    下载: 导出CSV

    表  5   短中波红外滤光片空间环境试验结果

    Table  5   Space environment test results of short and medium wave infrared filters

    Pilot project Test condition Test results
    Immersion test Soak in purified water at 45℃ for 8 h. Pass
    Adhesion test Film adhesion strength is tested by means of a polyester tape, in which the adhesive side of a standard polyester tape is pasted on the surface of the film to avoid air bubbles, and the peeling area of the film is tested by pulling up on one end of the tape. Pass
    Humidity test In a constant temperature and humidity chamber at a constant temperature of 45℃ and a relative humidity of more than 95% for 72 h. The temperature and humidity of the chamber were determined by the temperature and humidity of the chamber and the relative humidity of the chamber. Pass
    Temperature alternation test The temperature was kept at 45℃ for 30 min, then cooled down at a rate of 3℃/h to -10℃, then stopped cooling down, kept for 30 min, and then warmed up at a rate of 3℃/h to 45℃. Finish into a cycle, a total of 5 cycles. Pass
    Low temperature impact test Place the filter at room temperature into a container filled with liquid nitrogen and let it stand for 5 min. remove it and warm it up naturally, and keep it at room temperature for 15 min to complete a cycle, and carry out a total of 5 cycles. Pass
    UV irradiation test The infrared filter is located at the entrance of the optical path, where the UV irradiation is derived from direct solar irradiation and solar irradiation reflected by the Earth's surface and attenuated by several optical elements, and is analysed for stray light to obtain a 5200 ESH dose. Pass
    Co60 γ irradiation test Total radiation dose of 40 krad(Si) based on 700 km of track, 8 years of lifetime, with a design margin. Pass
    下载: 导出CSV
  • [1] 柳青, 周锦松, 聂云峰, 等. 线性渐变滤光片光谱分光特性及检测方法研究[J]. 光谱学与光谱分析, 2015, 35(4): 1142-1145. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201504064.htm

    LIU Qing, ZHOU Jinsong, NIE Yunfeng, et al. Research on spectral spectral characteristics and detection methods of linear gradient filter[J]. Spectroscopy and Spectral Analysis, 2015, 35(4): 1142-1145. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201504064.htm

    [2] 胡嘉宁, 王小勇, 阮宁娟, 等. 亚微米像元器件在空间应用中的光学系统设计[J]. 航天返回与遥感, 2019, 40(1): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201901007.htm

    HU Jianing, WANG Xiaoyong, RUAN Ningjuan, et al. Study on submicron pixel size detector applied in the space optical system design[J]. Spacecraft Recovery & Remote Sensing, 2019, 40(1): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201901007.htm

    [3] 刘冬梅, 罗云峰, 付秀华, 等. 低损耗1064 nm带通滤光片多层膜的散射特性研究[J]. 中国激光, 2021, 48(9): 90-99. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202109012.htm

    LIU Dongmei, LUO Yunfeng, Fu Xiuhua, et al. Scattering characteristics of multilayer films with low loss 1064 nm bandpass filter[J]. China Laser, 2021, 48(9): 90-99. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202109012.htm

    [4] 王可欣, 王斌科, 田昌会, 等. 双阻带红外频率选择表面的设计[J]. 红外与激光工程, 2018, 47(7): 126-132. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201807018.htm

    WANG Kexin, WANG Binke, TIAN Changhui, et al. Design of dual stopband infrared frequency selective surfaces[J]. Infrared and Laser Engineering, 2018, 47(7): 126-132. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201807018.htm

    [5] 陈刚, 刘定权, 马冲, 等. 可见光和近红外双带通薄膜滤光片的光谱调控[J]. 红外与毫米波学报, 2020, 39(6): 791-795. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202006018.htm

    CHEN Gang, LIU Dingquan, MA Chong, et al. Spectral modulation of visible and near-infrared dual bandpass thin film filters[J]. Journal of Infrared and Millimeter Waves, 2020, 39(6): 791-795. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202006018.htm

    [6]

    WANG Fang, SU Jingqin, WANG Wenyi, et al. Parasitic oscillation in high power laser facility with multi-pass-cavity amplification[J]. High Power Laser and Particle Beams, 2009, 21(8): 1183-1186.

    [7] 刘彦丽, 赵海博, 钟晓明, 等. 天基复合计算光谱探测与识别方法研究[J]. 航天返回与遥感, 2021, 42(6): 74-81. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202106009.htm

    LIU Yanli, ZHAO Haibo, ZHONG Xiaoming, et al. Research on space-based composite computational spectroscopy detection and identification methods[J]. Aerospace Return and Remote Sensing, 2021, 42(6): 74-81. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202106009.htm

    [8] Reynard F, 顾聚兴. 薄膜涂料造就可变波长滤光片[J]. 红外, 1994(2): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI199402008.htm

    Reynard F, GU Juxing. Thin film coatings create variable wavelength filters[J]. Infrared, 1994(2): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI199402008.htm

    [9] 顾培夫, 李海峰, 章岳光, 等. 用于倾斜入射的波分复用薄膜滤光片的特性及改进[J]. 光学学报, 2003, 23(3): 377-380. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200303024.htm

    GU Peifu, LI Haifeng, ZHANG Yueguang, et al. Characteristics and improvement of wavelength division multiplexing thin film filters for oblique incidence[J]. Journal of Optics, 2003, 23(3): 377-380. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200303024.htm

    [10] 刘睿曦, 王劲强, 董龙. CCD型软X射线探测器能量分辨率提高方法研究[J]. 航天返回与遥感, 2020, 41(1): 102-112. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202001013.htm

    LIU Ruixi, WANG Jinqiang, DONG Long. Research on methods for improving energy resolution of CCD soft X-ray detectors[J]. Aerospace Return and Remote Sensing, 2020, 41(1): 102-112. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202001013.htm

    [11]

    Namgoong J W, Kim S H, CHUNG S W, et al. Aryloxy and chloro substituted zinc(Ⅱ) phthalocyanine dyes: synthesis, characterization and application for reducing the thickness of color filters[J]. Dyes and Pigments, 2018, 154(1): 128-136.

    [12]

    Holsteen A L, Cihan A F, Brongersma M L. Temporal color mixing and dynamic beam shaping with silicon metasurfaces [J]. Science, 2019, 365(6450): 257-260. DOI: 10.1126/science.aax5961

    [13] 邹曜璞, 张磊, 韩昌佩, 等. 傅里叶光谱仪高精度光谱定标研究[J]. 光谱学与光谱分析, 2018, 38(4): 1268-1275. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201804055.htm

    ZOU Yaopu, ZHANG Lei, HAN Changpei, et al. Research on high-precision spectral calibration of Fourier spectrometers[J]. Spectroscopy and Spectral Analysis, 2018, 38(4): 1268-1275. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201804055.htm

    [14] 段微波, 李大琪, 余德明, 等. 一种用于超光谱成像系统中消高级次光谱集成滤光片的设计与研制[J]. 红外与毫米波学报, 2016, 35(4): 430-434. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201604009.htm

    DUAN Weibo, LI Daqi, YU Deming, et al. Design and development of an integrated filter for eliminating advanced sub spectra in hyperspectral imaging systems[J]. Journal of Infrared and Millimeter Waves, 2016, 35(4): 430-434. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201604009.htm

    [15] 刘华松, 杨霄, 刘丹丹, 等. SiO2薄膜光学常数物理模型[J]. 红外与激光工程, 2017, 46(9): 0921003. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201709045.htm

    LIU Huasong, YANG Xiao, LIU Dandan, et al. Physical model of optical constants for SiO2 thin films[J]. Infrared and Laser Engineering, 2017, 46(9): 294-299. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201709045.htm

    [16]

    Joo W J, Kyoung J, Esfandyarpour M, et al. Metasurface driven OLED displays beyond 10, 000 pixels per inch[J]. Science, 2020, 370(6515): 459-463.

    [17]

    Lee Y, Park M-K, Kim S, et al. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator[J]. ACS Photonics, 2017, 4(8): 1954-1966.

    [18]

    SUN S, YANG W, ZHANG C, et al. Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces[J]. ACS Nano, 2018, 12(3): 2151-2159.

    [19]

    SUN S, ZHOU Z, ZHANG C, et al. All-dielectric full-color printing with TiO2 metasurfaces[J]. ACS Nano, 2017, 11(5): 4445-4452.

    [20]

    LI Z Y, BUTUN S, AYDIN K. Large area, lithography free super absorbers and color filters at visible frequencies using ultrathin metallic films[J]. ACS Photonics, 2015, 2(2): 183-188.

    [21]

    YANG B, LIU W W, LI Z C, et al. Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels[J]. Advanced Optical Materials, 2018, 6(4): 1701009. http://www.xueshufan.com/publication/2782553781

    [22] 中华人民共和国航天工业部. 红外干涉滤光片通用技术条件, QJ 1697-1989[S]. 北京: 国防工业出版社, 1989.

    Ministry of Aerospace Industry. General Specification for Infrared Interference Filter, QJ 1697-1989[S]. Beijing: Defense Industry Press, 1989.

图(7)  /  表(5)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  13
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-24
  • 修回日期:  2023-09-19
  • 网络出版日期:  2024-05-23
  • 刊出日期:  2024-05-19

目录

/

返回文章
返回