基于边缘引导滤波增强和GWT的红外与微光图像融合

Infrared and Low Light Image Fusion Based on Edge-guided Filtering Enhancement and GWT

  • 摘要: 图像融合是用特定的算法将两幅或多幅图像融合为一幅新的图像,用于提高图像的辨识度和细节丰富度。本文针对传统红外与微光图像融合方法出现细节缺失、边缘纹理不清晰等问题,提出了一种基于边缘引导滤波增强和图小波变换(Graph Wavelet Transform, GWT)的图像融合算法。首先,使用边缘引导滤波对微光图像进行预处理增强。接着使用GWT对红外和微光图像分别进行多尺度分解,得到各自的低频子带图像和高频子带图像。对低频子图像,使用滚动引导滤波(Rolling Guidance Filtering, RGF)进行分解得到基础层和细节层,其中基础层利用视觉显著映射(Visual Saliency Map, VSM)进行融合,细节层利用最大绝对值原则(Max Absolute, MA)进行融合;对高频子图像,采用区域能量最大进行融合。最后,对融合后的低频和高频子带图像进行GWT反变换,得到最终的融合结果。在公开数据集上的实验结果表明,该方法表现出较好的主观视觉效果,优于所比较的其他算法,且保留了更多的纹理信息和边缘细节。

     

    Abstract: Image fusion aims to improve image recognition and detail richness of images by fusing two or more images into a new image using a specific algorithm. This paper proposes an image fusion algorithm based on edge-guided filtering enhancement and graph wavelet transform (GWT) to solve problems of traditional image fusion methods such as lack of details and unclear edge textures. Firstly, edge-guided filtering is used to pre-process and enhance low light images. Then, GWT is used to perform multi-scale decomposition on infrared and low light images, obtaining their respective low-frequency and high-frequency sub-band images. For low-frequency sub images, rolling guidance filtering (RGF) is used for decomposition to obtain the base layer and detail layer. The base layer is fused using visual saliency map (VSM), while the detail layer is fused using the maximum absolute (MA) principle; For high-frequency sub images, fusion is performed using maximum regional energy. Finally, GWT inverse transformation is performed on the fused low-frequency and high-frequency sub-band images to obtain the final fusion result. The experimental results on public datasets demonstrate the proposed method is superior to compared algorithms in terms of high subjective visual effects, and texture information preservation and edge details.

     

/

返回文章
返回