基于红外成像的中低压电网电力稳定器高温运行可靠性图像识别方法

代子阔, 史可鉴, 宋仕达, 刘扬, 徐妍

代子阔, 史可鉴, 宋仕达, 刘扬, 徐妍. 基于红外成像的中低压电网电力稳定器高温运行可靠性图像识别方法[J]. 红外技术, 2023, 45(12): 1351-1357.
引用本文: 代子阔, 史可鉴, 宋仕达, 刘扬, 徐妍. 基于红外成像的中低压电网电力稳定器高温运行可靠性图像识别方法[J]. 红外技术, 2023, 45(12): 1351-1357.
DAI Zikuo, SHI Kejian, SONG Shida, LIU Yang, XU Yan. Reliability Image Recognition Method for High Temperature Operation of Power Stabilizer in Medium and Low Voltage Grids Based on Infrared Imaging[J]. Infrared Technology , 2023, 45(12): 1351-1357.
Citation: DAI Zikuo, SHI Kejian, SONG Shida, LIU Yang, XU Yan. Reliability Image Recognition Method for High Temperature Operation of Power Stabilizer in Medium and Low Voltage Grids Based on Infrared Imaging[J]. Infrared Technology , 2023, 45(12): 1351-1357.

基于红外成像的中低压电网电力稳定器高温运行可靠性图像识别方法

基金项目: 

国网辽宁省电力有限公司科技项目 2021YF-63

详细信息
    作者简介:

    代子阔(1985-),男,满族,辽宁沈阳人,硕士,高级工程师,主要研究方向:配电网智能运维技术、配电网供电可靠性提升关键技术等。E-mail: bizhao83231@163.com

  • 中图分类号: TP111.69

Reliability Image Recognition Method for High Temperature Operation of Power Stabilizer in Medium and Low Voltage Grids Based on Infrared Imaging

  • 摘要: 电力稳定器在电网中起到稳定电压的作用,一旦该设备出现异常,电网运输电力质量会受到直接影响。面对这种情况,研究一种基于红外成像技术的中低压电网电力稳定器高温运行可靠性图像识别技术。该研究中利用红外成像技术采集电力稳定器图像并实施预处理。分割电力稳定器红外图像,划分目标区域和背景区域。提取目标区域5个直方图-阶统计特征。以5个直方图-阶统计特征为基础,结合判别系数,构建分类器,实现电力稳定器状态识别。针对存在异常的电力稳定器,计算图像目标区域处的相对温差,确定可靠性等级。结果表明:5个测试稳定器中只有2个稳定器处在异常状态,具体为稳定器2中组成部分3异常,稳定器5中组成部分1异常。稳定器2组成部分3相对温差为82.32%,对应可靠等级为2级,可靠性低;稳定器5组成部分1相对温差为91.35%,对应可靠等级为3级,可靠性非常低。对比实验结果表明,所提方法识别准确率达到92.3%以上,优于对比方法,具有更大的应用价值。
    Abstract: Power stabilizers are crucial in stabilizing the voltage in power grids. If the equipment is abnormal, the power quality of the power grid is directly affected. In this context, an image recognition technology based on thermal infrared hyperspectral imaging technology for the high-temperature operation reliability of power stabilizers in medium- and low-voltage power grids was studied. In this study, thermal infrared hyperspectral imaging was used to collect images of the power stabilizer and perform preprocessing. The thermal infrared hyperspectral image of the power stabilizer was segmented, and the target and background areas were divided. Five first-order statistical histogram features were extracted from the target areas. Based on the first-order statistical features of the five histograms combined with the discrimination coefficient, a classifier was constructed to realize the state recognition of the power stabilizer. For a power stabilizer with abnormalities, the relative temperature difference in the image target area was calculated to determine the reliability level. The results show that only two of the five test stabilizers are in an abnormal state; specifically, component 3 of stabilizer 2 is abnormal, and component 1 of stabilizer 5 is abnormal. The relative temperature difference of component 3 of stabilizer 2 was 82.32%, and the corresponding reliability level was level 2, with low reliability; the relative temperature difference of component 1 of stabilizer 5 was 91.35%, the corresponding reliability level was level 3, and the reliability was extremely low. Comparative experimental results show that the recognition accuracy of the proposed method reaches 92.3% or higher, which is superior to that of the comparison method and has a greater application value.
  • 随着红外制导技术的不断发展,装有红外传感器的导弹是飞机的最主要威胁,据统计,1973-2001年有49%的飞机损失来自红外导弹,其中1984-2001年90%的飞机损失来自红外导弹[1-2]。为保护飞机免受红外制导导弹的攻击,红外干扰弹应运而生,现今发展的红外干扰弹包括多点源红外干扰弹和面源红外干扰弹。多点源红外干扰弹依靠烟火药柱产生一个与飞机红外辐射特性类似,但能量大于飞机辐射能量2~10倍的热源,以质心干扰的方式达到欺骗来袭红外制导导弹的目的[3];面源红外干扰弹依靠在空间形成大面积红外辐射云团,使飞机“淹没”在红外辐射云团中,以掩盖飞机自身的红外辐射特征,导致红外导引头无法分辨飞机红外辐射源和面源红外干扰弹辐射源[4-5],飞机采用机动规避的方式逃逸出导引头视场,从而免遭红外制导导弹的攻击;多点源红外干扰弹在空中形成强红外辐射源诱骗红外导引头,面红外辐射源在空中形成大面积红外辐射源掩盖飞机自身的红外辐射源,两者结合,可有效迷惑红外制导导引头,提高载机的自卫对抗能力。

    飞机的红外辐射特性是红外制导导弹识别、捕获、跟踪、摧毁飞机的信号来源,飞机的红外辐射信号主要由机身蒙皮、尾喷管和尾焰组成[4],其中尾焰和尾喷管是飞机红外辐射的主要来源,红外制导导弹从不同方向攻击飞机时,由于方向不同,导致导引头探测目标的辐射强度和辐射面积差异很大,飞机投放干扰弹的时机和种类也不同。因此,探测飞机在不同方向的辐射特征对干扰弹弹种选择具有重要意义。

    本文采用光谱辐射计、中波红外热像仪、长波红外热像仪对飞机在不同方向上的红外辐射性能进行测试,研究飞机发动机工作时在不同方向上的红外辐射性能,指导飞机应对不同方向来袭的红外制导导弹时红外干扰弹投放使用策略。

    选择飞机0°、正侧向90°、尾后180°三个测试角度,选择合适测试点,飞机发动机处于正常工作状态,测试场景示意图如图 1所示,测试距离300 m,飞机包络尺寸为不大于50 m×50 m×10 m,飞机发动机直径不大于1 m,因此,在测试场景下飞机可当作点目标。

    图  1  测试场景示意图
    Figure  1.  Schematic diagram of test scenario

    试验前应对光谱辐射计进行标定,在同一测试条件下,对黑体和被测试目标进行测试,标定对应温度下的黑体温度。

    $$ I(\lambda )=\frac{({V}_{\rm{s}}-{V}_{\rm{b}}){R}^{2}}{({V}_{\rm{BB}}-{V}_{\rm{Bb}}){L}^{2}}\times M({T}_{\rm{BB}})\times \frac{\rm{π}{D}^{4}}{4}$$ (1)

    式中:VsVb分别为飞机的信号、飞机附近的背景信号;VBBVBb分别为黑体的信号、背景信号;R为测试距离;L为黑体标定距离;TBB为黑体温度;M(TBB)为黑体在TBB的光谱辐射出射度;D为光阑口径。

    选定不同方位(迎头、正侧向、尾后),架好仪器设备,发动机处于正常工作状态下,测试飞机的中/长波红外辐射强度、辐射面积。

    辐射计测试时,首先采用标准黑体源对光谱辐射计进行标定,得到光谱辐射计的光谱响应曲线;随后,采用标定后的光谱辐射计对待测对象进行测试,经过光谱强度积分和大气修正得到测试飞机的辐射强度曲线[6]

    按式(2)计算光谱响应系数:

    $$K\left( \lambda \right) = \frac{{\Delta {V_{\rm{c}}}\left( \lambda \right) \cdot {{\left( {{L_{\rm{c}}}} \right)}^2}}}{{{A_{{\rm{bb}}}} \cdot P\left( {\lambda ,{T_{\rm{c}}}} \right)}}$$ (2)

    式中:K(λ)为标定系数,V/(W/(μm·m2));ΔVc(λ)为标定电压,V;Lc为标定距离,m;Abb为黑体腔口面积,m2P(λ, Tc)为黑体的光谱辐亮度,W/(μm·sr·m2);Tc为黑体温度,K。

    按式(3)计算红外辐射强度:

    $$I = \frac{1}{{{\tau _{\rm{a}}}}}\int_{{\lambda _{\min }}}^{{\lambda _{\max }}} {\frac{{\Delta {V_{\rm{m}}}\left( \lambda \right) \cdot {{\left( {{L_{{\rm{ob}}}}} \right)}^2}}}{{K\left( \lambda \right)}}} {\rm{d}}\lambda $$ (3)

    式中:I为辐射强度,W/sr;ΔVm(λ)为测试电压,V;Lob为测试距离,m;λminλmax分别为波段的波长下限和上限,μm;τa为大气透过率(采用Lowtran大气模型根据实时气象条件计算)。

    热像仪测试时,首先采用标准黑体源对热像仪进行标定,得到热像仪的辐射响应定标文件(定期进行);采用热像仪对待测对象进行测试,得到飞机在不同方向上的温度分布图像,根据测试距离、视场角分辨率及图像像元数计算特征辐射面积S

    $$ \mathit{S}{\rm{ = }}{\mathit{n}_{\rm{T}}}{\rm{\cdot}}\mathit{\gamma }{\rm{\cdot}}\mathit{d} $$ (4)

    式中:nT为视场内温度为某特定值或特定范围内的像元数目;γ为仪器角分辨率,rad/像元;d为测试距离,m。可根据需要,提取热像中目标的温度分布特征和目标图像特征。

    1)光谱辐射计测试结果(迎头)

    按照上述测试方法和数据处理方法,对光谱辐射计测试数据进行处理,得到飞机在中长波红外的辐射强度随时间的关系如图 2所示。

    图  2  迎头测试中长波红外辐射强度随时间的关系图
    Figure  2.  Plot of middle-long wave infrared radiation intensity over time in head-on test

    图 2可知,测试时,3~5 μm的光谱辐射强度和8~14 μm的光谱辐射强度值均较低,这是由于测试时,机身遮挡,导致尾焰的辐射强度大部分被遮挡。

    2)中红外热像仪测试结果(迎头)

    按照1.3.2测试方法和数据处理方法,对中红外热像仪测试数据进行处理,得到飞机在中红外的特征辐射面积时间变化关系如图 3所示。

    图  3  中波红外特征辐射面积随时间的变化关系图
    Figure  3.  Middle wave infrared characteristic radiation area over time

    图 3可知,中红外热像仪测试得到辐射面积最大为3.68 m2,且辐射面积随时间变化。这是由两种原因造成的,第一是飞行员操作时,不可能保证飞机发动机一直处于同一种工作状态,而是在某一工作状态附近波动;第二是由于气候原因,由于风速、风向等时刻变化,导致发动机尾焰在与大气环境传热传质过程中一直处于变化状态,从而导致特征辐射面积发生变化。

    3)长波红外热像仪测试结果(迎头)

    按照1.3.2测试方法和数据处理方法,对长波红外热像仪测试数据进行处理,得到飞机在长波红外的辐射面积随时间变化关系如图 4所示。

    图  4  长波红外辐射面积随时间的变化关系图
    Figure  4.  Long wave infrared characteristic radiation area over time

    图 4可知,长波红外热像仪测试得飞机的最大红外特征辐射面积约为5.4 m2,比中红外辐射面积高,这也是由于飞机发动机尾焰的大部分红外辐射被飞机机身遮挡,而机身蒙皮在长波红外的辐射特征比中红外的辐射特征明显。

    用同样的方式测试飞机在同样工作状态下,正测向、尾向的红外辐射特征。将测试数据用同样的方式处理,得到测试结果如表 1所示。

    表  1  飞机红外辐射特征测试结果汇总
    Table  1.  Summary of aircraft radiation characteristics test results
    Test direction and angle Wave length Radiation intensity/(W/Sr) Radiation area/m2
     Head-on 0°  3 to 5 μm 50.00 3.68
     8 to 14 μm 50.00 5.40
     Lateral 90°  3 to 5 μm 68.00 25.90
     8 to 14 μm 150.00 12.53
     Stern 180°  3 to 5 μm 140.00 8.85
     8 to 14 μm 80.00 1.05
    下载: 导出CSV 
    | 显示表格

    测试数据可得如下结论:①飞机正侧向的中长波红外辐射面积比迎头和尾后都高,这是由于正侧向时,飞机最大截面与红外热像仪视场垂直,导致红外辐射面积最大;②飞机尾后的中长波红外辐射强度远远高于正侧向和迎头,尤其是中红外辐射强度达到最高,说明发动机工作时,尾焰和尾喷管能显著提高飞机的红外辐射特征,但是辐射面积较小;③由于飞机机身的遮挡作用,飞机的红外辐射强度和面积均最小。

    面源红外干扰弹投放后在载机附近迅速扩散开来形成红外干扰云团,其与被保护载机的红外图像相似,或改变载机的红外图像特征,欺骗红外成像制导导弹,继而诱使红外成像制导导弹偏离被保护的载机。面源红外干扰弹对抗红外成像制导导弹,各个阶段可以采用不同的方式进行干扰[7]

    目标搜索阶段,导弹距离目标通常很远,目标机形成的红外图像很小,处于点目标阶段,当面源红外干扰弹连续投放后,在真目标附近形成大面积红外辐射云团,掩盖目标的红外辐射特征,使红外成像制导导弹导引头无法锁定真目标,面源红外干扰弹起到“隐真示假”的作用。

    目标跟踪阶段初期,弹目距离逐渐缩短,目标形成的红外图像逐渐变大,且逐渐显示目标的外形特征,此时,红外成像制导导弹使用形心跟踪或是质心跟踪方式跟踪目标。当连续投放面源红外干扰弹后,在目标附近形成大面积红外辐射云团,其红外特征与目标相似,并与目标融合在一起形成共同的目标信息,甚至完全掩盖目标的红外辐射特征,从而改变导弹视场内的目标红外辐射特征,常用的灰度、面积、长宽比、圆度等识别特征均发生较大变化,制导系统难以识别出真目标,此时,实际目标的特征或运动参数将以不稳定或“非目标”的方式变化(如机动逃逸),而面源红外干扰弹的特征保持稳定(持续燃烧或连续投放),此时,成像导弹的识别系统将会锁定假目标,而达到干扰目的。

    目标跟踪阶段后期,弹目距离很近,目标在导引头视场内外形特征清楚,导引头可根据目标的外形特征(面积、长宽比、圆度等)对目标进行跟踪。此时,连续投放面源红外干扰弹后,面源红外干扰弹形成大面积红外辐射云团,与目标红外辐射特征融合,增大了整个红外辐射云团的辐射面积,改变目标的外形特征,增大导引头识别算法的运算量和识别难度,使其难以识别真目标,导致成像导引头无法通过目标的面目标特征识别出目标,从而有效降低其命中目标概率。

    点源红外干扰弹发射后形成单个热点目标,连续投放后形成多个点目标,通过质心干扰的方式诱骗红外制导导引头哦。由于点源红外干扰弹能量高,远大于飞机的红外辐射强度,在对抗早期第一代、第二代红外制导导引头时有效;随着具有辐射强度阈值鉴别能力的第三代、第四代红外制导导引头的装备,点源红外干扰弹由于能量太高,且干扰源数量少,干扰效能不高的缺点越来越明显。因此,点源红外干扰弹逐步被多点源红外干扰弹取代。

    多点源红外干扰弹发射后形成多个分散的点源红外干扰弹,连续投放后形成多个点状发热体。采用多发齐射或多方位齐射时,可迅速在一定空域形成红外高辐射区,在导引头瞬时视场内形成持续的多个干扰源,将目标信号淹没,且多点源红外干扰弹的辐射能量比点源红外干扰弹的小,略高于飞机,导引头无法通过强度阈值鉴别滤除干扰,导引头必须处理多组脉冲信号,降低了其检测目标的概率,红外导引头即使启动了抗干扰措施,但因探测器的噪声几何级数增大,而难以提取有效的制导信号,从而起到保护载机的作用[8]

    根据飞机发动机工作时,飞机不同方向上的红外辐射特征数据,以及多点源红外干扰弹、面源红外干扰弹的特点,可分析出飞机在面临不同方向成像红外导弹导引头时红外干扰弹的使用策略[9]

    1)当来袭红外制导导弹从尾后攻击飞机时,开始导弹距飞机较远,飞机在红外导引头中显示为一个热点,此时采用多点源红外干扰弹,以质心干扰的方式诱骗红外导引头;随着来袭导弹与飞机距离缩短,飞机在导引头中面积逐渐增大,采用面源红外干扰弹,其红外辐射云团与飞机融合,改变目标的红外辐射特征和在导引头视角下的面目标特征,使导引头分辨不出目标,从而形成有效干扰。多点源红外干扰弹和面源红外干扰弹组合使用,两者结合可有效干扰红外导引头。

    2)当来袭红外制导导弹侧向攻击飞机时,由于飞机在红外导引头中显示的面积较大,且能量较高,此时可采用面源红外干扰弹有效掩盖目标的红外辐射特征,干扰来袭导弹导引头。

    3)当来袭红外制导导弹迎头攻击飞机时,由于此时飞机在红外导引头中显示的面积和能量均很低,此时采用多点源红外干扰弹和面源红外干扰弹组合使用,通过多点源红外干扰弹的质心干扰,形成假目标,结合面源红外干扰弹的大面积特征,掩盖目标的红外辐射特征,隐藏真实目标特征,点和面结合,达到“隐真示假”的效果,可有效干扰红外制导导弹导引头。

    本文以飞机为研究对象,采用光谱辐射计、中长波红外热像仪测试了飞机发动机工作时,飞机迎头、正侧向、尾向3个不同方向上的红外辐射特征,根据红外辐射特征,结合多点源红外干扰弹、面源红外干扰弹的特点,分析了飞机在面临不同方向来袭红外制导导弹时干扰弹的投放策略。当来袭导弹从尾后攻击时,远距时采用多点源红外干扰弹、中近距时采用面源红外干扰弹;侧向攻击时,采用面源红外干扰弹;迎头攻击时,采用点源、面源组合使用,可形成有效干扰。

  • 图  1   电力稳定器图像采集示意图

    Figure  1.   Schematic diagram of the image acquisition of the power stabilizer

    图  2   训练样本

    Figure  2.   The training sample

    图  3   部分红外稳定器图像

    Figure  3.   Part of the infrared stabilizer image

    图  4   稳定器热状态判断结果

    Figure  4.   Thermal state determination results of the stabilizer

    图  5   可靠性确定结果

    Figure  5.   Reliability determination results

    表  1   红外稳定器图像特征

    Table  1   Infrared stabilizer image features

    Sample Grayscale maximum Kurtosis coefficient Entropy Skewness Standard deviation
    1 1.28 8.56 0.21 2.58 10.55
    2 2.45 8.45 0.23 3.52 10.82
    3 2.12 7.45 0.47 1.48 14.55
    4 2.89 9.54 0.85 1.98 10.23
    5 3.54 8.12 0.42 2.89 8.55
    6 4.22 7.26 0.12 2.41 13.62
    7 3.46 6.54 1.48 2.19 14.20
    8 0.65 5.64 1.85 2.58 12.32
    9 0.89 8.65 0.65 3.55 18.55
    10 4.12 7.12 0.71 2.14 17.32
    11 1.32 7.02 1.25 8.42 14.22
    12 2.65 4.22 1.20 1.48 10.25
    13 3.56 3.65 1.85 2.54 8.42
    14 2.64 5.88 0.55 4.22 9.55
    15 2.65 7.52 0.51 3.55 10.21
    16 2.10 6.55 0.14 2.78 7.45
    17 3.84 4.12 0.16 3.89 6.89
    18 3.52 1.25 0.82 4.78 7.52
    19 2.27 1.20 0.45 8.45 10.95
    20 2.88 5.54 0.47 2.12 11.14
    下载: 导出CSV

    表  2   对比结果

    Table  2   Comparison of the results

    Serial Number Recognition accuracy of the proposed method/% The recognition accuracy of the method in reference [3]/% The recognition accuracy of the method in reference [4]/%
    1 95.3 84.3 79.6
    2 94.6 84.9 81.2
    3 96.2 82.3 83.4
    4 93.8 81.7 81.6
    5 96.7 82.5 84.9
    6 95.2 83.5 81.8.
    7 95.4 84.9 79.4
    8 95.6 82.3 79.8
    9 94.3 81.5 80.6
    10 92.3 84.5 80.7
    下载: 导出CSV
  • [1]

    Gavoshani A, Orouji A A. A novel deep gate power MOSFET in partial SOI technology for achieving high breakdown voltage and low lattice temperature[J]. Journal of Computational Electronics, 2021, 20(9): 1-7.

    [2]

    OUYANG Q, WANG L, Park B, et al. Simultaneous quantification of chemical constituents in matcha with visible-near infrared hyperspectral imaging technology[J]. Food Chemistry, 2021, 350(6): 129141.

    [3]

    DU Houxian, LIU Hao, LEI Longwu, et al. Power transformer fault detection based on multi-eigenvalues of vibration signal[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 83-94.

    [4]

    ZHANG Zhaoyu, HU Yidan, SONG Yanfeng, et al. Development and application of mechanical vibration ultrasonic fusion detection sensor for electric power equipment[J]. Chinese Journal of Electrical Engineering, 2023, 43(14): 5713-5723.

    [5]

    WANG Kaixuan, REN Fuji, NI Hongjun, et al. Temperature value recognition algorithm for the infrared image of power equipment[J]. CAAI Transactions on Intelligent Systems, 2022, 17(3): 617-624.

    [6]

    HUANG H, HU X, TIAN J, et al. Rapid and nondestructive prediction of amylose and amylopectin contents in sorghum based on hyperspectral imaging[J]. Food Chemistry, 2021, 359(8): 129954.

    [7]

    Daradkeh Y I, Tvoroshenko I, Gorokhovatskyi V, et al. Development of effective methods for structural image recognition using the principles of data granulation and apparatus of fuzzy logic[J]. IEEE Access, 2021, 9(99): 13417-13428.

    [8]

    WANG Y, LIU H, GUO M, et al. Image recognition model based on deep learning for remaining oil recognition from visualization experiment[J]. Fuel, 2021, 291(3): 120216.

    [9]

    CHEN M, WANG X, LUO H, et al. Learning to focus: cascaded feature matching network for few-shot image recognition[J]. Science China Information Sciences, 2021, 64(9): 192105. DOI: 10.1007/s11432-020-2973-7

    [10]

    GAO P, ZHAO D, CHEN X. Multi-dimensional data modelling of video image action recognition and motion capture in deep learning framework[J]. IET Image Processing, 2020, 14(7): 1257-1264. DOI: 10.1049/iet-ipr.2019.0588

    [11]

    Karunakaran V, Saritha V N, Ramya A N, et al. Elucidating Raman image-guided differential recognition of clinically confirmed grades of cervical exfoliated cells by dual biomarker-appended SERS-tag[J]. Analytical Chemistry, 2021, 93(32): 11140-11150. DOI: 10.1021/acs.analchem.1c01607

    [12]

    ZHAO Y, WANG C, PEI J, et al. Nonlinear loose coupled non-negative matrix factorization for low-resolution image recognition[J]. Neurocomputing, 2021, 443(8): 183-198

    [13]

    Andriyanov N A, Dementiev V E, Kargashin Y D. Analysis of the impact of visual attacks on the characteristics of neural networks in image recognition[J]. Procedia Computer Science, 2021, 186(12): 495-502.

    [14]

    WANG F, HU R, JIN Y. Research on gesture image recognition method based on transfer learning[J]. Procedia Computer Science, 2021, 187(10): 140-145.

    [15]

    Quionez Y, Lizarraga C, Peraza J, et al. Image recognition in UAV videos using convolutional neural networks[J]. IET Software, 2020, 14(2): 176-181. DOI: 10.1049/iet-sen.2019.0045

    [16]

    Corti E, Khanna A, Niang K, et al. Time-delay encoded image recognition in a network of resistively coupled VO2 on Si oscillators[J]. IEEE Electron Device Letters, 2020, 41(4): 629-632.

  • 期刊类型引用(4)

    1. 周萍,代威,陆浩然,常晓华,李强,廖传军,宋海英. 航天装备主动防御隐身技术综述. 安全与电磁兼容. 2025(02): 18-34 . 百度学术
    2. 王东,高俊光,陈磊,张恒伟,路亚旭. 喷气式飞机尾喷管及尾焰红外辐射特性测量分析. 激光与红外. 2024(07): 1097-1101 . 百度学术
    3. 王东,李武周,樊仁杰,刘小虎. 运输机迎头飞行状态红外辐射特性测量及分析. 光学与光电技术. 2023(02): 114-119 . 百度学术
    4. 胡长德,张海波,王朝晖,王林旭,李子杨,刘婕. 一种红外辐射特性测量教学训练系统. 光学仪器. 2022(04): 10-15 . 百度学术

    其他类型引用(1)

图(5)  /  表(2)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  52
  • PDF下载量:  1
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-09-20
  • 修回日期:  2023-03-26
  • 刊出日期:  2023-12-19

目录

/

返回文章
返回