基于改进斑点鬣狗优化算法的红外图像分割

Infrared Image Segmentation Based on Improved Spotted Hyena Optimizer

  • 摘要: 针对斑点鬣狗优化算法(spotted hyena optimizer,SHO)容易陷入局部最优解、求解质量低等缺点,本文提出使用Lévy飞行和单纯形搜索算法改进SHO(spotted hyena optimizer based on simplex method and Lévy flight, Lévy_SM_SHO)。将Lévy_SM_SHO与Lévy飞行斑点鬣狗优化算法(spotted hyena optimizer based on Lévy flight, Lévy_SHO)、单纯形搜索斑点鬣狗优化算法(spotted hyena optimizer based on simplex method, SM_SHO)和SHO在测试函数上结果进行对比,实验证明改进算法能够取得较好的优化结果。并将Lévy_SM_SHO算法用于红外图像阈值分割问题,通过与粒子群算法(particle swarm optimization, PSO)分割结果对比,证明Lévy_SM_SHO算法能够取得较好的阈值分割结果。

     

    Abstract: Based on the shortcomings of the spotted hyena optimizer (SHO), falling into a local optimal solution or a low-quality solution is easy. In this study, the Lévy flight and simplex method are proposed to improve the SHO(Lévy_SM_SHO). Comparing Lévy_SM_SHO to Lévy flight spotted hyena optimizer (Lévy_SHO), simplex method spotted hyena optimizer (SM_SHO), and spotted hyena optimizer (SHO) on the test function, the experiment proves that the improved algorithm can achieve better optimization results. Finally, the Lévy_SM_SHO algorithm is applied to the infrared image threshold segmentation problem. By crosschecking the segmentation results with the particle swarm optimization algorithm (PSO), we proved that the Lévy_SM_SHO algorithm can achieve better threshold segmentation results.

     

/

返回文章
返回