中波红外量子点材料与探测器研究进展

李志, 唐利斌, 左文彬, 田品, 姬荣斌

李志, 唐利斌, 左文彬, 田品, 姬荣斌. 中波红外量子点材料与探测器研究进展[J]. 红外技术, 2023, 45(12): 1263-1277.
引用本文: 李志, 唐利斌, 左文彬, 田品, 姬荣斌. 中波红外量子点材料与探测器研究进展[J]. 红外技术, 2023, 45(12): 1263-1277.
LI Zhi, TANG Libin, ZUO Wenbin, TIAN Pin, JI Rongbin. Research Progress of Materials and Detectors for Mid-wave Infrared Quantum Dots[J]. Infrared Technology , 2023, 45(12): 1263-1277.
Citation: LI Zhi, TANG Libin, ZUO Wenbin, TIAN Pin, JI Rongbin. Research Progress of Materials and Detectors for Mid-wave Infrared Quantum Dots[J]. Infrared Technology , 2023, 45(12): 1263-1277.

中波红外量子点材料与探测器研究进展

基金项目: 

国家重点研发计划 2019YFB2203404

云南省创新团队项目 2018HC020

详细信息
    作者简介:

    李志(1999-),男,硕士研究生,研究方向是新型量子点光电探测材料与器件

    通讯作者:

    唐利斌(1978-),男,正高级工程师,博士生导师,主要从事光电材料与器件的研究。E-mail: sscitang@163.com

  • 中图分类号: TN204

Research Progress of Materials and Detectors for Mid-wave Infrared Quantum Dots

  • 摘要: 量子点(Quantum dots,QDs)由于本身所具有的量子限域效应、尺寸效应和表面效应等各种特性,被广泛应用于光电探测、生物医学、新能源等方面。而中波红外(Mid-wave infrared,MWIR)量子点作为近年来红外领域的研究热点,通过调整控制其尺寸的大小,能够扩展其红外吸收波长。因此,成功制备中波红外量子点材料和器件对红外成像、红外制导和搜索跟踪等方面有着重要意义。本文首先介绍了HgSe、HgTe、PbSe、Ag2Se和HgCdTe五种中波红外量子点材料制备合成技术,分析了量子点的尺寸形貌、晶格条纹以及红外吸收光谱等特性,然后对国内外中波红外量子点探测器进行了归纳总结,概述了探测器的器件结构、制备方法,并对器件的响应率、探测率以及响应时间等光电性能参数进行了对比分析。最后,对中波红外量子点的发展进行了展望。
    Abstract: Quantum dots (QDs) are widely used in photoelectric detection, biomedicine, new energy, and other fields because of their quantum limitations, size, and surface effects. Recent years have seen midwave infrared (MWIR) quantum dots (QDs) become a focal point in infrared research. By adjusting and controlling their size, these QDs can extend their absorption wavelengths in the infrared spectrum. Therefore, the successful preparation of infrared QD materials and devices is crucial for infrared imaging, guidance, search, and tracking. This study first introduces the preparation and synthesis technology of five types of MWIR QDs materials, HgSe, HgTe, PbSe, Ag2Se, and HgCdTe, analyzes the size and morphology, lattice fringe, and infrared absorption spectrum characteristics of the QDs, and then summarizes the domestic and foreign MWIR QDs detectors. The device structures and preparation methods of the detector are summarized, and the photoelectric performance parameters, such as responsivity, detectivity, and response time, of the detectors are compared and analyzed. Finally, the development of MWIR QDs was discussed.
  • 随着探测技术的不断发展,红外探测器在军民领域的应用越来越广泛,红外探测器的性能也在不断提高。此外,红外探测器正向更大面阵、更小像元、更高分辨率的方向发展。目前,为了表征探测器性能的好坏,常用MTF来衡量。在对探测器MTF测试时,要求标准成像镜头的传递函数高于探测器,因此红外高分辨率小像元探测器的MTF测试要求其标准成像镜头在无中心遮拦并且具有衍射极限的良好像质基础上,相对于传统的标准镜具有更大的相对孔径也就是更小的F数[1-2]。但是对于光学系统来说,F数越小,在光学设计的过程中也会更加困难。所以本文基于上述问题,开展波段处于1.1~2.5 μm,视场角为1.6°×2.4°并且F数接近1的红外光学系统设计。由于F数极小,在设计时需要的镜片数量也较多。为了使结构简单,并且具有相对较小的体积,本文选择使用离轴三反射式的光学结构。

    目前国内对离轴三反光学系统的研究相对较晚,在2002年,刘琳、薛鸣球等人分析研究了一款10 m焦距、F数为10的三反射式结构的长焦距望远镜系统[3]。2006年,张亮、安源等人研究设计了一款3个反射面均是二次曲面、焦距为2000 mm、F数为9的离轴三反射镜系统[4]。2016年,孟庆宇、汪洪源等人设计了一款1200 mm焦距、F数12、30°×1°视场的可见光波段离轴三反成像系统,其主镜为高阶偶次非球面,次镜为球面,三镜为自由曲面[5]。通过上述几位学者对离轴反射系统的研究,发现了离轴三反射式光学系统具备同时校正球差、彗差与像散3种像差的能力,可以实现较高的光学性能。对比目前现有的具有小F数大视场的离轴三反光学系统,大多都采用了自由曲面,虽然自由曲面的设计自由度较高,但是考虑到自由曲面面型的复杂性以及加工的困难性,本文选择采用具有旋转对称性并且面型简单的偶次非球面来进行小F数红外光学系统的设计[6]。所以本文根据系统的指标要求,首先利用高斯公式以及三级像差理论自主计算得到同轴三反系统的初始结构,然后通过视场离轴和孔径离轴相结合的方式来避免中心遮拦这一问题,并且,该系统中的三面反射镜都采用了偶次非球面,使系统在后续优化的过程中,很好地校正了像差。最终设计出F数为1.3的小F数红外光学系统。此系统的研究可能对红外探测器后续的发展起到很大的作用。

    在进行光学设计时,一般常用折射式、折反式和反射式系统。折射式系统结构形式丰富,而且能够同时满足大视场大相对孔径的要求。折反式系统具有外形尺寸小、透射比高、光能损失少等优点。但最重要的是,在光学设计过程中,无论是折射式结构还是折反式结构都需要使用光学透射材料。由于本文是针对红外波段来进行光学系统的设计,所以还要选择特殊的红外材料。但是由于红外光学材料类别有限,这样就会为红外光学系统的设计带来一定的局限性[7-8]

    相比于折射式和折反式结构来说,反射式系统无色差,对波段也没有要求,反射式光学系统元件比较少,而且光路设计形式灵活,可以满足大口径、大视场、长焦距等多种要求。综上所述,本文选择采用全反射式结构。在采用该结构时,如果仅使用两镜系统,那么可优化的变量太少,在后续对像差的优化过程中增加了难度,然而由4个或多个反射镜组成的多反射镜系统结构复杂。所以三反系统更有利于该系统的设计[9]

    此外,反射系统可以分为两类,即同轴系统和离轴系统。相比于同轴系统,离轴式反射系统无中心遮拦,视场比较大。最终本论文选择采用离轴三反式结构来进行小F数红外光学系统的设计。

    离轴三反系统可以分为两种形式,一种是两次成像的Rug型,另一种是一次成像的Cook型。这两种形式的结构如图 1所示。

    图  1  离轴三反系统结构分类
    Figure  1.  Structural classification of off axis three reverse systems

    图 1(a)为有中间像面的Rug型离轴三反系统,光阑位于主镜附近,有利于结构紧凑,可以在中间像面附近加消杂光光阑,能够有效抑制杂散光,适用于小视场大范围目标跟踪的光学系统。图 1(b)为无中间像面的Cook型离轴三反系统,光阑位于次镜附近,有较好的对称性,有利于实现大视场。适用于大视场目标捕获的扫描成像系统。基于该优点,所以本文选择Cook型结构来进行小F数红外光学系统的设计[10-11]

    光学系统的设计指标如表 1所示。

    表  1  光学系统设计参数
    Table  1.  Parameters of optical system
    Parameters Value
    Focal length 60 mm
    F# 1.3
    Field of view 1.6°×2.4°
    Wavelength 1.1-2.5 μm
    MTF(100lp/mm) > 0.6
    下载: 导出CSV 
    | 显示表格

    离轴三反系统是在同轴三反系统结构基础上进行偏心和倾斜得到的。图 2为同轴三反系统的结构图。因此要想得到离轴三反系统,必须先计算出同轴三反系统的结构参数。即三面反射镜的曲率半径,主次镜之间距离,次镜和三镜之间的距离,主镜、次镜、三镜的面型参数[12-15]

    图  2  同轴三反结构
    Figure  2.  Coaxial three-mirror structure

    同轴三反系统的轮廓主要由以下参数决定:

    次镜对主镜的遮拦比:

    $$ α_{1}=l_{2}/f′≈h_{2}/h_{1}$$ (1)

    三镜对次镜的遮拦比:

    $$ α_{2}=l_{3}/l_{2}′≈h_{3}/h_{2}$$ (2)

    次镜的放大率:

    $$ β_{1}=l_{2}′/l_{2}≈u_{2}/u_{2}′$$ (3)

    三镜的放大率:

    $$ β_{2}=l_{3}′/l_{3}≈u_{3}/u_{3}′$$ (4)

    根据三级像差理论,经推导得到各参数之间的数学关系:

    $$ R_1^{} = \frac{2}{{{\beta _1}{\beta _2}}}f' $$ (5)
    $$ R_2^{} = \frac{{2{\alpha _1}}}{{\beta {}_2(1 + {\beta _1})}}f' $$ (6)
    $$ R_3^{} = \frac{{2{\alpha _1}{\alpha _2}}}{{1 + {\beta _2}}}f' $$ (7)
    $$ d_1^{} = \frac{{1 - {\alpha _1}}}{{{\beta _1}{\beta _2}}}f' $$ (8)
    $$ d_2^{} = \frac{{{\alpha _1}(1 - {\alpha _2})}}{{{\beta _1}{\beta _2}}}f' $$ (9)

    由于该设计采用Cook型离轴三反光学系统结构,所以我们只需给定系统中遮拦比和放大率中的任意三个变量,即可计算得到初始结构。由于本文想要采用图 1中一次成像系统的结构形式,那么一般可以给定α1在0.394左右,α2在1.17左右,所以本文令α1=0.394,α2=1.17,再根据平像场条件可得到β1=0.86,最后再基于以上公式(5)~(9)和三级像差理论,使得三级像差表达式各个像差等于零,就可以求解出系统的曲率半径、距离和三个反射镜的圆锥系数。表 2为最终求得的初始结构参数[16]

    表  2  初始结构参数
    Table  2.  Initial structural parameters
    Reflecting mirror Radius/mm Distance/mm Conic
    Primary mirror −178.890 −46 −1.465
    Secondary mirror −49.969 46 1.137
    Tertiary mirror −68.314 −50 0.163
    下载: 导出CSV 
    | 显示表格

    将上述光学设计指标和计算出的同轴三反光学系统的初始结构输入到光学设计软件中,得到最初的同轴三反结构。

    首先将同轴系统中的曲率半径、三镜之间的距离以及圆锥系数都设为变量,先对该同轴结构进行初步的优化,使其具有优良的成像质量。然后再分别设定主镜、次镜、三镜的偏心和倾斜使其离轴。在离轴的过程中,此系统没有单独使用视场离轴,而是采用孔径离轴与视场离轴相结合的方式。主要是因为系统F数很小,在优化时,发现系统很容易产生中心遮拦。而且该系统的三面反射镜为非球面,不像自由曲面自由度那么高,所以采用两者相结合的方式,相当于增加了可优化的变量,从而能够更好实现高像质和较小的体积。除此之外,系统在优化的过程中还是会产生中心遮拦以及系统的同轴化,所以特利用以下方法来控制镜面与可能被光线遮拦部分的最小距离[17]图 3为无中心遮拦系统结构图,具体步骤如下:

    图  3  无中心遮拦系统结构
    Figure  3.  Structure diagram of the system without central obstruction

    1)首先提取点ABC的全局坐标YAYBYC

    2)根据A点和C点的全局坐标可以计算得到该条光线的斜率k

    3)再依据斜率kA点坐标即可得到该条光线的截距b

    4)最后再计算出AB之间的距离Δ,合理限制Δ大小即可很好地避免系统产生中心遮拦。

    综合上述优化思路,对其他会产生遮拦的部分采用同样的方法,不断地对系统进行优化。最后优化完成得到的离轴三反光学系统结构如图 4所示。相应的结构参数如表 3所示。

    图  4  优化后的离轴三反光学系统
    Figure  4.  Optimized off- axis three mirror optical system
    表  3  优化后的结构参数
      Radius/mm Distance/mm Conic Decenter Y/mm Tilt About X/(°)
    Primary mirror −881.861 −118.000 −3.179 −79.000 −1.500
    Secondary mirror −153.457 58.000 9.968 20.000 15.000
    Tertiary mirror −96.431 −47.631 −1.204 1.064 −0.565
    下载: 导出CSV 
    | 显示表格

    其间,在优化的过程中,由于该设计的三反系统F数很小,在对像差校正的过程中增加了很大难度,所以将反射镜的高次非球面系数设置为变量,再次优化,从而能够使系统进一步提高像质。最终反射镜的高次非球面系数如表 4所示。

    表  4  三面反射镜的高次非球面系数
    Table  4.  High order aspherical coefficients of three mirrors
    Reflecting mirror Four order term Sixth order term Eighth order term
    Primary mirror −5.208×10-9 −3.523×10-14 1.430×10-17
    Secondary mirror −3.883×10-8 1.024×10-11 2.642×10-15
    Tertiary mirror −2.083×10-7 −1.128×10-11 −2.011×10-15
    下载: 导出CSV 
    | 显示表格

    图 5为此光学系统的点列图。从图中可以观察到均方根半径最大为1.674 μm,小于探测器的像元尺寸。系统的MTF曲线如图 6所示。从MTF曲线图可以看出,在空间截止频率100 lp/mm处,各个视场的MTF均大于0.6,满足系统设计要求。图 7为系统的场曲和畸变,通过该图能够看出,系统各视场畸变都小于2%,场曲控制为±10 μm之间,通过以上指标可以知道,该设计具有良好的成像质量。

    图  5  点列图
    Figure  5.  Spot diagram
    图  6  MTF曲线
    Figure  6.  MTF curves
    图  7  场曲与畸变
    Figure  7.  Field curvature and distortion

    当光学系统理论设计完成后,在使用前还要经过制造、装调等过程。在这些过程中可能会遇到各种因素的影响,所以还要对光学系统进行公差分析。由于离轴三反系统相较于同轴三反系统在装调时具有更大的难度,所以为了保证加工和装调的可行性,需制定合理的公差分配来确保光学系统既可以做到低成本又能达到所要求的光学性能。离轴三反系统的公差主要为加工公差和装调公差,加工公差是指曲率半径、厚度、圆锥系数在加工过程中可能出现的误差。装调公差主要是指光学元件或光学表面沿着X/Y/Z的倾斜公差和光学元件沿X/Y/Z轴的偏心公差[18-22]。本文选择使用蒙特卡洛分析方法来进行公差分析,以系统各视场截止频率处的MTF作为系统性能衡量标准,对于离轴三反光学系统的公差分配结果如表 5所示。

    表  5  光学系统公差分配结果
    Table  5.  Tolerance allocation results for optical systems
    Tolerance category Assembly tolerance Machining tolerance
    Various tolerance
    sources
    DEC
    X/mm
    DEC
    Y/mm
    TILT
    X/(°)
    TILT
    Y/(°)
    ΔR/mm ΔD/mm Δ(−e2)
    Primary mirror ±0.065 ±0.065 ±0.018 ±0.027 ±0.2 ±0.2 ±1.000E-005
    Secondary mirror ±0.016 ±0.016 ±0.018 ±0.018 ±0.2 ±0.04 ±1.000E-005
    Tertiary mirror ±0.025 ±0.025 ±0.012 ±0.012 ±0.01 ±0.1 ±1.000E-005
    下载: 导出CSV 
    | 显示表格

    表 6为按照以上公差分配进行的200次蒙特卡洛分析结果,表明在上述公差范围内,系统MTF曲线在100 lp/mm处具有90%的概率大于0.4,并且MTF由于工艺因素的影响总下降量不大于0.2,满足成像要求。

    表  6  蒙特卡洛分析结果
    Table  6.  Monte Carlo analysis results
    Cumulative probability MTF value(100 lp/mm)
    90% 0.42674321
    80% 0.45558468
    50% 0.51148248
    20% 0.55397772
    10% 0.56854015
    下载: 导出CSV 
    | 显示表格

    本文根据红外探测器对高分辨率和小像元探测的需求,提出了一种小F数离轴三反光学系统。通过利用三级像差理论计算得到同轴三反的初始结构,并且为了避免中心遮拦、提高成像质量,采取视场离轴和

    孔径离轴相结合的方式。而且该系统的三面反射镜都采用了偶次非球面,能够很好地校正离轴像差。最终设计得到具有结构简单,并且体积相对较小的小F数红外光学系统。根据空间截止频率处的MTF值以及点列图可知,该系统成像质量满足要求。与现有的离轴三反系统相比,此系统具有较小的F数和良好的像质,对该类红外光学成像系统的研究和发展有着重要的意义。

  • 图  1   中波红外量子点探测技术发展历程

    Figure  1.   Developments of MWIR quantum dot detection technology

    图  2   HgSe CQDs的形貌结构、PL光谱及其吸收光谱:HgSe CQDs的(a) TEM图像;(b) 不同反应时间的吸收光谱以及(c) PL光谱[26];HgSe CQD的(d)15.5 nm粒径TEM图像和(e)不同尺寸的吸收光谱[20];(f)HgSe CQDs的TEM图像[24];(g)HgSe CQDs的TEM图像和(h)吸收光谱[25];(i)不同合成条件下的HgSe和HgTe CQDs的吸收光谱[23]

    Figure  2.   Morphology structures, PL spectra and absorption spectrum of HgSe CQDs: (a) TEM image, (b) Absorption spectrum with different reaction times and (c) PL spectra of HgSe CQDs[26]; (d) 15.5 nm particle size TEM image and (e) Absorption spectrum with different particle sizes of HgSe CQDs[20]; (f) TEM image of HgSe CQDs[24]; (g) TEM image and (h) Absorption spectrum of HgSe CQDs[25]; (i) Absorption spectra of HgSe and HgTe CQDs with different synthesis conditions[23]

    图  3   HgTe、PbSe和Ag2Se CQDs的形貌结构、粒径分布及其吸收光谱:(a)HgTe Ncs的TEM图像和吸收光谱[47];HgTe CQDs的(b)TEM图像和(c)吸收光谱[19];(d)不同尺寸HgTe CQDs的吸收光谱[21];HgTe CQDs的(e)TEM图像,插图为HRTEM图像和(f)粒径分布[18];PbSe CQDs的(g)TEM图像及其(h)粒径分布[32];(i)Ag2Se CQDs的粒径分布[35]

    Figure  3.   Morphology structures, particle size distributions and absorption spectra of HgTe, PbSe and Ag2Se CQDs: (a) TEM images and absorption spectrum of HgTe Ncs[47]; (b) TEM image and (c) Absorption spectrum of HgTe CQDs[19]; (d) Absorption spectrum of HgTe CQDs with different sizes[21]; (e) TEM image, insert is HRTEM image and (f) Particle size distribution of HgTe CQDs[18]; (g) TEM image and (h) Particle size distribution of PbSe CQDs[32]; (i) Particle size distribution of Ag2Se CQDs[35]

    图  4   Ag2Se和HgCdTe CQDs的形貌结构及其吸收光谱:Ag2Se CQDs的(a)TEM图像与(b)吸收光谱[36];(c)7.3 nm的Ag2Se CQDs的TEM图像,插图为选区电子衍射图[35];(d)不同粒径尺寸Ag2Se CQDs薄膜的FTIR吸收光谱[35];HgCdTe CQD的(e)TEM图像和(f)吸收光谱[30];HgCdTe CQD的(g)TEM图像;(h)HRTEM图像和(i)吸收光谱[29]

    Figure  4.   Morphology structures and absorption spectrum of Ag2Se and HgCdTe CQDs: (a) TEM images and (b) Absorption spectrum of Ag2Se CQDs[36]; (c) TEM image of 7.3 nm Ag2Se CQDs, insert is a selection electron diffraction pattern[35]; (d) FTIR absorption spectrum of Ag2Se CQDs films with different particle sizes[35]; (e) TEM image and (f) Absorption spectrum of HgCdTe CQDs[30]; (g) TEM image, (h) HRTEM image and (i) absorption spectrum of HgCdTe CQDs[29]

    图  5   HgTe CQDs和SMLQD-QCD中波红外探测器的性能:(a)量子级联和表面等离子体耦合结构的中波红外反射和增强光谱[50];(b)HgTe CQDs的首次中波红外成像图[52];四色HgTe CQDs探测器的(c)探测率曲线和(d)响应率曲线[16];SMLQD-QCD的(e)器件结构图;(f)响应率曲线;(g)不同温度的暗电流曲线以及(h)探测率曲线[61];(i)单层量子点p-i-n器件的响应率曲线[64]

    Figure  5.   Performances of MWIR detector for HgTe CQDs and SMLQD-QCD: (a) MWIR reflection and enhancement spectrum of QCD and surface plasmon coupled structure[50]; (b) First MWIR imaging of HgTe CQDs[52]; (c) Detectivity curve and (d) Responsivity curves of four-color HgTe CQDs detector[16]; (e) Structure diagram, (f) Responsivity curves, (g) Dark current curves with different temperatures, and (h) Detectivity curves of MLQD-QCD[61]; (i) Responsivity curves of single layer quantum dot p-i-n device[64]

    图  6   HgTe CQDs和PbSe CQDs中波红外探测器的性能测试:不同截止波长HgTe CQDs器件随温度变化的响应率曲线(a)样品A为2.8 μm;(b)样品B为3.4 μm,(c)样品C为5.3 μm以及(d)样品C的暗电流曲线,插图为70 K和210 K下的I-V曲线[18];(e)HgTe CQDs中波红外探测器5 V偏压下的探测率[10];4.8 μm像元的HgTe CQDs器件不同偏压下的(f)响应率曲线和(g)探测率曲线[21];(h)不同尺寸HgTe CQDs薄膜的吸收光谱[20];(i)PbSe CQDs上转换中波红外光电探测器的响应率曲线[65]

    Figure  6.   Performances testing of HgTe CQDs and PbSe CQDs MWIR detector: Responsivity curves of different cut-off wavelength HgTe CQDs device with changed temperatures (a) Sample A 2.8 μm, (b) Sample B 3.4 μm, (c) Sample C 5.3 μm and (d) Dark current curves of sample C, insert is the I-V curves at 70 K and 210 K[18]; (e) Detectivity of HgTe CQD MWIR detector at 5 V bias[10]; (f) Responsivity curves and (g) Detectivity curves of 4.8 μm pixel HgTe CQDs device at different bias voltage[21]; (h) Absorption spectra of HgTe CQDs films with different size[20]; (i) Responsivity curves of PbSe CQDs up-conversion mid-wave infrared photodetector[65]

    图  7   HgTe CQDs中波红外探测器的器件结构及其性能:HgTe CQDs器件的(a)结构图和不同温度下的(b)光电流曲线,(c)响应率曲线,(d)探测率曲线和(e)暗电流曲线[56];HgTe CQDs光导器件的(f)响应率曲线和(g)探测率曲线[54];等离激元增强HgTe CQDs探测器的(h)器件结构和(i)响应率曲线[58]

    Figure  7.   Device structures and performances of HgTe CQDs MWIR detectors: (a) Structure diagram and (b) Photocurrent curves, (c) Responsivity curves, (d) Detectivity curves and (e) Dark current curves of HgTe CQDs device with different temperatures[56]; (f) Responsivity curves and (g) Detectivity curves of HgTe CQDs photoconductive device[54]; (h) Device structure and (i) Responsivity curve of plasmon enhanced HgTe CQDs detector[58]

    图  8   HgTe、HgSe CQDs中波红外探测器的器件结构、性能及焦平面成像:(a)SWIR/MWIR双波段HgTe CQDs探测器的器件结构[53];不同偏压下4.2 μm HgSe CQDs器件的(b)光电流曲线和(c)响应率曲线[25];(d)SWIR/MWIR双波段HgTe CQDs探测器在不同温度下的探测率曲线[53];(e)9 V偏压下4个不同波长的HgSe CQDs器件的响应率曲线[25];(f)具有纳米片结构的4.2 μm HgSe CQDs探测器的响应率曲线[25];HgTe/HgSe CQDs复合光电二极管的(g)器件结构和(h)I-V曲线[23];(i)640×512 HgTe CQDs中波红外焦平面热成像[67]

    Figure  8.   Device structures, performances, and FPA imaging of HgTe and HgSe CQDs MWIR detectors: (a) Device structure of SWIR/MWIR dual-band HgTe CQDs detector[53]; (b) Photocurrent curves and (c) Responsivity curves of 4.2 μm HgSe CQDs devices[25]; (d) Detectivity curves of SWIR/MWIR dual-band HgTe CQDs detector under different bias voltages[53]; (e) Responsivity curves of four devices with different wavelength at 9 V bias voltage[25]; (f) Responsivity curves of 4.2 μm HgSe CQDs detector with nano-disks[25]; (g) Device structure and (h) I-V curves of HgTe/HgSe CQDs mixed photodiode[23]; (i) 640×512 HgTe CQDs MWIR FPA thermal imaging[67]

    表  1   不同中波红外量子点材料及其主要性能指标

    Table  1   Different MWIR quantum dot materials and their main performance merits

    Quantum dot materials Preparation method Grain size/nm Absorption wavelength/µm Ref. Quantum dot materials Preparation method Grain size/nm Absorption wavelength/µm Ref.
    HgTe Water-based synthetic 3-12 1.2-3.7 [13] HgCdTe Hot injection 8-11 2.2-5 [28]
    Two-step injection 14.5 1.3-5 [14] ~14 3 [29]
    Colloidal atomic layer deposition (c-ALD) 9-10 5 [15] Chemical synthesis 15-16 2-7 [30]
    Hot injection 10-16 2-5 [16] PbSe Chemical synthesis 10-17 4.1 [31]
    5-15 2.2-3.3 [17] Hot injection ~18 3.3-3.5 [32]
    6-12 2.8-7 [18] 30 2.5-5 [33]
    5-15 1.5-5 [19] 20-100 1-25 [34]
    ~15 3-5 [20] Ag2Se Hot injection 7.3 5.6 [35]
    ~20 2-10 [21] 5-6 2-5 [36]
    HgSe - 10 3-20 [22] 5-28 4.8 [37]
    Hot injection 4-6 2-5 [23] - 4.1 [38]
    4.7 3.3-5 [24] - 5 [39]
    10-15 3-10 [25] 8-10 3-5 [40]
    6.2 3-5 [26] 5 4.2 [41]
    5.4 4.2 [27] 5.5 4.2 [42]
    下载: 导出CSV

    表  2   中波红外量子点探测器件的量子点薄膜的制备方法、器件结构及其主要性能参数[53-63]

    Table  2   Preparation method, device structure and main performance parameters of quantum dot film for MWIR quantum dot detector[53-63]

    Preparation method of QD thin film Device structure Response wavelength/µm R/(A/W) D*/Jones Response time/µs Ref.
    Spray-coating HgTe QDs/Au/Cr/PET 2-5 0.9 8×109 - [16]
    Spin-coating QDs/Au/Si/SiO2 ~7 - 107-109 0.2 [17]
    Au/HgSe-HgTe/Al/Sapphire 4.4 - 1.5×109 < 0.5 [26]
    Pt/HgTe CQDs/HgSe 4.2 1.45×10-3 - - [25]
    Au/HgCdTe CQDs/p-Si/Al 3.5 - 1.6×108 - [30]
    Ag/Ag2Se QDs/PbS QD/Ag2Se QDs/Ag/Cr/Sapphire 4.2 13.3 3×105 - [41]
    Al/ZnO/ Ag2Se CQDs-PbS CQDs/MoOx/Au/Cr/Glass 4.2 19 7.8×106 - [42]
    Au/Bi2Se3/HgTe CQDs/Ag2Te/HgTe CQDs/Bi2Se3/ITO/Al2O3 3-5 - 3×1010 - [53]
    PMMA/HgTe CQDs/SiO2/Si 5 0.23 5.4×1010 2.9 [54]
    Drop-casting Pt/HgTe CQDs/Pt/Glass 2.8-7 > 0.1 2×109 < 0.1 [18]
    Pt/HgTe CQDs/Pt 1.5-5 ≈1×10-3 1010 - [19]
    Pt/HgSe CQDs/Pt/ZnSe 2.5-5 5×10-4 8.5×108 - [26]
    Ag2Se CQDs/ZnO/Al2O3/Glass 2-5 - - - [36]
    Au/Ag2Se CQDs/SiO2/Si 4.1 0.35 - - [33]
    HgCdTe CQD/Au/Sapphire 2.5-5 8.9×10-4 108 - [55]
    HgTe CQDs/Si 3-5 0.15-0.25 2×109 - [10]
    Au/Ag2Te CQDs/HgTe CQDs/ ITO/Al2O3 3.8-4.8 0.38 1.2×1011 1.3 [56]
    Pt/HgTe CQDs/Pt 3.5 0.1 3.5×1010 - [57]
    Layer-by-layer deposition Pd/HgTe CQDs/Ti/SiO2/Si ~6.5 1.8×10-3 1.3×109 < 5 [20]
    HgTe CQDs/PMMA/Si/SiO2 2-10 ~0.1 2×107 - [21]
    Au/Ag2Se QDs/SiO2/Si 4.8 8×10-3 - - [37]
    Au/Ag2Se CQDs/SiO2/Si 5 1.66 - - [39]
    HgTe CQDs/ROIC/LCC 3.6 - 2×1010 - [51]
    Au/SiO2/Au+ITO/HgTe QDs/Plasmonic nano-disks/ITO/Al2O3 ~4.5 1.62 4×1011 - [58]
    PbS QDs/Au/CaF2 5-9 1.5×10-4 4×104 - [59]
    MBE P3-P2-P1-Hg1-xCdxTe 2.5-5.1 - 2.02×1011 - [60]
    n-GaAs/SML-QDS/DFLS/n-GaAs/Si 5-8 5.9×10-4 3×1010 - [61]
    Au/Ti/In0.53Ga0.47As/In0.52Al0.48As/Au/Ti/InP 5.8-10.4 6×10-4 2.6×108 - [62]
    Dip-coating Ag/HgTe CQDs/NiCr/CaF2 2.2-6.7 > 0.38 > 1010 - [63]
    下载: 导出CSV
  • [1] 钟和甫, 唐利斌, 余黎静, 等. 量子点合成及其光电功能薄膜研究进展[J]. 红外技术, 2022, 44(2): 103. http://hwjs.nvir.cn/article/id/970e7470-f304-4c45-829c-2b426518c568

    ZHONG H F, TANG L B, YU L J, et al. Research progress of quantum dots synthesis and their photoelectric functional films[J]. Infrared Technology, 2022, 44(2): 103. http://hwjs.nvir.cn/article/id/970e7470-f304-4c45-829c-2b426518c568

    [2]

    ZHANG W, LIM H, Tsao S, et al. InAs quantum dot infrared photodetectors (QDIP) on InP by MOCVD[C]//Infrared Spaceborne Remote Sensing XII. of SPIE, 2004, 5543: 22-30.

    [3]

    Gunapala S D, Bandara S V, Hill C J, et al. Quantum wells to quantum dots: 640×512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array[C]//Infrared Detectors and Focal Plane Arrays Ⅷ. of SPIE, 2006, 6295: 629501.

    [4]

    Vatansever F, Hamblin M R. Far infrared radiation (FIR): its biological effects and medical applications[J]. Photonics & Lasers in Medicine, 2012, 1(4): 255-266.

    [5]

    Lhuillier E, Guyot-Sionnest P. Recent progresses in mid infrared nanocrystal optoelectronics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(5): 1-8.

    [6]

    Rogalski A. Recent progress in infrared detector technologies[J]. Infrared Physics & Technology, 2011, 54(3): 136-154.

    [7]

    LU H, Carroll G M, Neale N R, et al. Infrared quantum dots: progress, challenges, and opportunities[J]. ACS Nano, 2019, 13(2): 939-953.

    [8]

    LIU D, WEN S, GUO Y, et al. Synthesis of HgTe colloidal quantum dots for infrared photodetector[J]. Materials Letters, 2021, 291: 129523. DOI: 10.1016/j.matlet.2021.129523

    [9]

    Nakotte T, Munyan S G, Murphy J W, et al. Colloidal quantum dot based infrared detectors: extending to the mid-infrared and moving from the lab to the field[J]. Journal of Materials Chemistry C, 2022, 10(3): 790-804. DOI: 10.1039/D1TC05359K

    [10]

    Keuleyan S, Lhuillier E, Brajuskovic V, et al. Mid-infrared HgTe colloidal quantum dot photodetectors[J]. Nature Photonics, 2011, 5(8): 489-493. DOI: 10.1038/nphoton.2011.142

    [11]

    ZHANG H, Peterson J C, Guyot-Sionnest P. Intraband transition of HgTe nanocrystals for long-wave infrared detection at 12 μm[J]. ACS Nano, 2023, 17(8): 7530-7538. DOI: 10.1021/acsnano.2c12636

    [12]

    HUO N, Gupta S, Konstantatos G. MoS2-HgTe quantum dot hybrid photodetectors beyond 2 μm[J]. Advanced Materials, 2017, 29(17): 1606576. DOI: 10.1002/adma.201606576

    [13]

    Kovalenko M V, Kaufmann E, D Pachinger, et al. Colloidal HgTe nanocrystals with widely tunable narrow band gap energies: from telecommunications to molecular vibrations[J]. Journal of the American Chemical Society, 2006, 128(11): 3516-3523. DOI: 10.1021/ja058440j

    [14]

    Keuleyan S, Lhuillier E, Guyot-Sionnest P. Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and detection[J]. Journal of the American Chemical Society, 2011, 133(41): 16422-16424. DOI: 10.1021/ja2079509

    [15]

    SHEN G, Guyot-Sionnest P. HgTe/CdTe and HgSe/CdX (X= S, Se, and Te) core/shell mid-infrared quantum dots[J]. Chemistry of Materials, 2018, 31(1): 286-293.

    [16]

    Cryer M E, Halpert J E. 300 nm spectral resolution in the mid-infrared with robust, high responsivity flexible colloidal quantum dot devices at room temperature[J]. ACS Photonics, 2018, 5(8): 3009-3015. DOI: 10.1021/acsphotonics.8b00738

    [17]

    Lhuillier E, Keuleyan S, Liu H, et al. Colloidal HgTe material for low-cost detection into the MWIR[J]. Journal of Electronic Materials, 2012, 41(10): 2725-2729. DOI: 10.1007/s11664-012-2006-9

    [18]

    Lhuillier E, Keuleyan S, Rekemeyer P, et al. Thermal properties of mid-infrared colloidal quantum dot detectors[J]. Journal of Applied Physics, 2011, 110(3): 033110. DOI: 10.1063/1.3619857

    [19]

    Lhuillier E, Keuleyan S, Guyot-Sionnest P. Colloidal quantum dots for mid-IR applications[J]. Infrared Physics & Technology, 2013, 59: 133-136.

    [20]

    Keuleyan S E, Guyot-Sionnest P, Delerue C, et al. Mercury telluride colloidal quantum dots: electronic structure, size-dependent spectra, and photocurrent detection up to 12 μm[J]. ACS Nano, 2014, 8(8): 8676-8682. DOI: 10.1021/nn503805h

    [21]

    TANG X, TANG X B, Lai K W C. Scalable fabrication of infrared detectors with multispectral photoresponse based on patterned colloidal quantum dot films[J]. ACS Photonics, 2016, 3(12): 2396-2404. DOI: 10.1021/acsphotonics.6b00620

    [22]

    Lhuillier E, Scarafagio M, Hease P, et al. Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz[J]. Nano Letters, 2016, 16(2): 1282-1286. DOI: 10.1021/acs.nanolett.5b04616

    [23]

    Livache C, Martinez B, Goubet N, et al. A colloidal quantum dot infrared photodetector and its use for intraband detection[J]. Nature Communications, 2019, 10(1): 1-10. DOI: 10.1038/s41467-018-07882-8

    [24]

    ZHAO X, MU G, TANG X, et al. Mid-IR intraband photodetectors with colloidal quantum dots[J]. Coatings, 2022, 12(4): 467. DOI: 10.3390/coatings12040467

    [25]

    TANG X, WU G F, Lai K W C. Plasmon resonance enhanced colloidal HgSe quantum dot filterless narrowband photodetectors for mid-wave infrared[J]. Journal of Materials Chemistry C, 2017, 5(2): 362-369. DOI: 10.1039/C6TC04248A

    [26]

    DENG Z, Jeong K S, Guyot-Sionnest P. Colloidal quantum dots intraband photodetectors[J]. ACS Nano, 2014, 8(11): 11707-11714. DOI: 10.1021/nn505092a

    [27]

    Khalili A, Cavallo M, Dang T H, et al. Mid-wave infrared sensitized InGaAs using intraband transition in doped colloidal Ⅱ-Ⅵ nanocrystals[J]. The Journal of Chemical Physics, 2023, 158(9): 094702. DOI: 10.1063/5.0141328

    [28]

    Balakrishnan J, Sreeshma D, Siddesh B M, et al. Ternary alloyed HgCdTe nanocrystals for short-wave and mid-wave infrared region optoelectronic applications[J]. Nano Express, 2020, 1(2): 020015. DOI: 10.1088/2632-959X/aba230

    [29]

    Chatterjee A, Abhale A, Pendyala N, et al. Group Ⅱ-Ⅵ semiconductor quantum dot heterojunction photodiode for mid wave infrared detection[J]. Optoelectronics Letters, 2020, 16(4): 290-292. DOI: 10.1007/s11801-020-9155-5

    [30]

    Chatterjee A, Balakrishnan J, Pendyala N B, et al. Room temperature operated HgCdTe colloidal quantum dot infrared focal plane array using shockwave dispersion technique[J]. Applied Surface Science Advances, 2020, 1: 100024. DOI: 10.1016/j.apsadv.2020.100024

    [31]

    Pietryga J M, Schaller R D, Werder D, et al. Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots[J]. Journal of the American Chemical Society, 2004, 126(38): 11752-11753. DOI: 10.1021/ja047659f

    [32]

    Palosz W, Trivedi S, DeCuir Jr E, et al. Synthesis and characterization of large PbSe colloidal quantum dots[J]. Particle & Particle Systems Characterization, 2021, 38(6): 2000285.

    [33]

    Dolatyari M, Rostami A, Mathur S, et al. Trap engineering in solution processed PbSe quantum dots for high-speed MID-infrared photo- detectors[J]. Journal of Materials Chemistry C, 2019, 7(19): 5658-5669. DOI: 10.1039/C8TC06093B

    [34]

    PENG S, LI H, ZHANG C, et al. Promoted mid-infrared photodetection of PbSe film by iodine sensitization based on chemical bath deposition[J]. Nanomaterials, 2022, 12(9): 1391. DOI: 10.3390/nano12091391

    [35]

    Sahu A, Khare A, Deng D D, et al. Quantum confinement in silver selenide semiconductor nanocrystals[J]. Chemical Communications, 2012, 48(44): 5458-5460. DOI: 10.1039/c2cc30539a

    [36]

    Park M, Choi D, Choi Y, et al. Mid-infrared intraband transition of metal excess colloidal Ag2Se nanocrystals[J]. ACS Photonics, 2018, 5(5): 1907-1911. DOI: 10.1021/acsphotonics.8b00291

    [37]

    QU J, Goubet N, Livache C, et al. Intraband mid-infrared transitions in Ag2Se nanocrystals: potential and limitations for Hg-free low-cost photodetection[J]. The Journal of Physical Chemistry C, 2018, 122(31): 18161-18167. DOI: 10.1021/acs.jpcc.8b05699

    [38]

    Hafiz S B, Scimeca M R, Zhao P, et al. Silver selenide colloidal quantum dots for mid-wavelength infrared photodetection[J]. ACS Applied Nano Materials, 2019, 2(3): 1631-1636. DOI: 10.1021/acsanm.9b00069

    [39]

    Hafiz S B, Al Mahfuz M M, Scimeca M R, et al. Ligand engineering of mid-infrared Ag2Se colloidal quantum dots[J]. Physica E: Low-dimensional Systems and Nanostructures, 2020, 124: 114223. DOI: 10.1016/j.physe.2020.114223

    [40]

    Son J, Choi D, Park M, et al. Transformation of colloidal quantum dot: from intraband transition to localized surface plasmon resonance[J]. Nano Letters, 2020, 20(7): 4985-4992. DOI: 10.1021/acs.nanolett.0c01080

    [41]

    Hafiz S B, Al Mahfuz M M, Ko D K. Vertically stacked intraband quantum dot devices for mid-wavelength infrared photodetection[J]. ACS Applied Materials & Interfaces, 2020, 13(1): 937-943.

    [42]

    Hafiz S B, Al Mahfuz M M, Lee S, et al. Midwavelength infrared p-n heterojunction diodes based on intraband colloidal quantum dots[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 49043-49049.

    [43] 王令仕. 中红外HgSe胶体量子点的合成及其薄膜特性的研究[D]. 郑州: 河南大学, 2022.

    WANG Lingshi. Synthesis of mid-infrared HgSe colloidal quantum dots and study of their thin film properties [D]. Zhengzhou: Henan University, 2022.

    [44]

    Selvig E, Hadzialic S, Skauli T, et al. Growth of HgTe nanowires[J]. Physica Scripta, 2006, 2006(T126): 115.

    [45]

    Rogach A, Kershaw S V, Burt M, et al. Colloidally prepared HgTe nanocrystals with strong room‐temperature infrared luminescence[J]. Advanced Materials, 1999, 11(7): 552-555. DOI: 10.1002/(SICI)1521-4095(199905)11:7<552::AID-ADMA552>3.0.CO;2-Q

    [46]

    Harrison M T, Kershaw S V, Rogach A L, et al. Wet chemical synthesis of highly luminescent HgTe/CdS core/shell nanocrystals[J]. Advanced Materials, 2000, 12(2): 123-125. DOI: 10.1002/(SICI)1521-4095(200001)12:2<123::AID-ADMA123>3.0.CO;2-H

    [47]

    Kovalenko M V, Kaufmann E, Pachinger D, et al. Colloidal HgTe nanocrystals with widely tunable narrow band gap energies: from telecommunications to molecular vibrations[J]. Journal of the American Chemical Society, 2006, 128(11): 3516-3517. DOI: 10.1021/ja058440j

    [48]

    Wise F W. Lead salt quantum dots: the limit of strong quantum confinement[J]. Accounts of Chemical Research, 2000, 33(11): 773-780. DOI: 10.1021/ar970220q

    [49] 李燕兰, 高达, 李震, 等. 大尺寸碲镉汞材料研究现状与趋势[J]. 激光与红外, 2022, 52(8): 1204-1210. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202208016.htm

    LI Y L, GAO D, LI Z, et al. Status and development trends of large area HgCdTe[J]. Laser & Infrared, 2022, 52(8): 1204-1210. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202208016.htm

    [50]

    LI L, XIONG D, WEN J, et al. A surface plasmonic coupled mid-long-infrared two-color quantum cascade detector[J]. Infrared Physics & Technology, 2016, 79: 45-49.

    [51]

    Ciani A J, Pimpinella R E, Grein C H, et al. Colloidal quantum dots for low-cost MWIR imaging[C]//Infrared Technology and Applications XLII of SPIE, 2016, 9819: 333-341.

    [52]

    Buurma C, Pimpinella R E, Ciani A J, et al. MWIR imaging with low-cost colloidal quantum dot films[C]//Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications of SPIE, 2016, 9933: 993303.

    [53]

    TANG X, Ackerman M M, CHEN M, et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes[J]. Nature Photonics, 2019, 13(4): 277-282. DOI: 10.1038/s41566-019-0362-1

    [54]

    CHEN M, LAN X, TANG X, et al. High carrier mobility in HgTe quantum dot solids improves mid-IR photodetectors[J]. ACS Photonics, 2019, 6(9): 2358-2365. DOI: 10.1021/acsphotonics.9b01050

    [55]

    Chatterjee A, Jagtap A, Pendyala N, et al. HgCdTe quantum dot over interdigitated electrode for mid-wave infrared photon detection and its noise characterization[J]. International Journal of Nanoscience, 2020, 19(3): 1950020. DOI: 10.1142/S0219581X19500200

    [56]

    Ackerman M M, Tang X, Guyot-Sionnest P. Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors[J]. ACS Nano, 2018, 12(7): 7264-7271. DOI: 10.1021/acsnano.8b03425

    [57]

    Lhuillier E, Keuleyan S, Zolotavin P, et al. Mid-infrared HgTe/As2S3 field effect transistors and photodetectors[J]. Advanced Materials, 2013, 25(1): 137-141. DOI: 10.1002/adma.201203012

    [58]

    TANG X, Ackerman M M, Guyot-Sionnest P. Thermal imaging with plasmon resonance enhanced HgTe colloidal quantum dot photovoltaic devices[J]. ACS Nano, 2018, 12(7): 7362-7370. DOI: 10.1021/acsnano.8b03871

    [59]

    Ramiro I, Özdemir O, Christodoulou S, et al. Mid-and long-wave infrared optoelectronics via intraband transitions in PbS colloidal quantum dots[J]. Nano Letters, 2020, 20(2): 1003-1008. DOI: 10.1021/acs.nanolett.9b04130

    [60] 叶振华, 李杨, 胡伟达, 等. 同时模式的中波/长波碲镉汞双色红外探测器[J]. 红外与毫米波学报, 2012, 31(6): 497-500. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201206005.htm

    YE Z H, LI Y, HU W D, et al. Simultaneous mode MW/LW two color HgCdTe infrared detector[J]. J. Infrared Millim. Waves, 2012, 31(6): 497-500. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201206005.htm

    [61]

    HUANG J, GUO D, DENG Z, et al. Midwave infrared quantum dot quantum cascade photodetector monolithically grown on silicon substrate[J]. Journal of Lightwave Technology, 2018, 36(18): 4033-4038. DOI: 10.1109/JLT.2018.2859250

    [62]

    ZHU Y, ZHAI S, LIU J, et al. Mid-wave/long-wave dual-color infrared quantum cascade detector enhanced by antenna-coupled microcavity[J]. Optics Express, 2021, 29(23): 37327-37335. DOI: 10.1364/OE.438919

    [63]

    Guyot-Sionnest P, Roberts J A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots[J]. Applied Physics Letters, 2015, 107(25): 253104. DOI: 10.1063/1.4938135

    [64]

    De Souza C F, Alizadeh A, Nair S, et al. Mechanism of IR photoresponse in nanopatterned InAs/GaAs quantum dot pin photodiodes[J]. IEEE Journal of Quantum Electronics, 2010, 46(5): 832-836. DOI: 10.1109/JQE.2009.2035360

    [65]

    Motmaen A, Rostami A, Matloub S. Ultra high-efficiency integrated mid infrared to visible up-conversion system[J]. Scientific Reports, 2020, 10(1): 1-10. DOI: 10.1038/s41598-019-56847-4

    [66]

    ZHANG S, MU G, CAO J, et al. Single-/fused-band dual-mode mid-infrared imaging with colloidal quantum-dot triple-junctions[J]. Photonics Research, 2022, 10(8): 1987-1995. DOI: 10.1364/PRJ.458351

    [67] 谭伊玫, 张硕, 罗宇宁, 等. 640×512规模碲化汞量子点中波红外焦平面阵列(特邀)[J]. 红外与激光工程, 2023, 52(7): 20230377. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202307001.htm

    TAN Y M, ZHANG S, LUO Y N, et al. 640×512 HgTe colloidal quantum-dot mid-wave infrared focal plane array (invited)[J]. Infrared and Laser Engineering, 2023, 52(7): 20230377. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202307001.htm

  • 期刊类型引用(1)

    1. 褚萌. 累计降水量质控方法设计及应用. 中国新技术新产品. 2024(17): 136-138+142 . 百度学术

    其他类型引用(0)

图(8)  /  表(2)
计量
  • 文章访问数:  2359
  • HTML全文浏览量:  257
  • PDF下载量:  320
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-10-08
  • 修回日期:  2023-12-01
  • 刊出日期:  2023-12-19

目录

/

返回文章
返回