中波红外量子点材料与探测器研究进展

李志, 唐利斌, 左文彬, 田品, 姬荣斌

李志, 唐利斌, 左文彬, 田品, 姬荣斌. 中波红外量子点材料与探测器研究进展[J]. 红外技术, 2023, 45(12): 1263-1277.
引用本文: 李志, 唐利斌, 左文彬, 田品, 姬荣斌. 中波红外量子点材料与探测器研究进展[J]. 红外技术, 2023, 45(12): 1263-1277.
LI Zhi, TANG Libin, ZUO Wenbin, TIAN Pin, JI Rongbin. Research Progress of Materials and Detectors for Mid-wave Infrared Quantum Dots[J]. Infrared Technology , 2023, 45(12): 1263-1277.
Citation: LI Zhi, TANG Libin, ZUO Wenbin, TIAN Pin, JI Rongbin. Research Progress of Materials and Detectors for Mid-wave Infrared Quantum Dots[J]. Infrared Technology , 2023, 45(12): 1263-1277.

中波红外量子点材料与探测器研究进展

基金项目: 

国家重点研发计划 2019YFB2203404

云南省创新团队项目 2018HC020

详细信息
    作者简介:

    李志(1999-),男,硕士研究生,研究方向是新型量子点光电探测材料与器件

    通讯作者:

    唐利斌(1978-),男,正高级工程师,博士生导师,主要从事光电材料与器件的研究。E-mail: sscitang@163.com

  • 中图分类号: TN204

Research Progress of Materials and Detectors for Mid-wave Infrared Quantum Dots

  • 摘要: 量子点(Quantum dots,QDs)由于本身所具有的量子限域效应、尺寸效应和表面效应等各种特性,被广泛应用于光电探测、生物医学、新能源等方面。而中波红外(Mid-wave infrared,MWIR)量子点作为近年来红外领域的研究热点,通过调整控制其尺寸的大小,能够扩展其红外吸收波长。因此,成功制备中波红外量子点材料和器件对红外成像、红外制导和搜索跟踪等方面有着重要意义。本文首先介绍了HgSe、HgTe、PbSe、Ag2Se和HgCdTe五种中波红外量子点材料制备合成技术,分析了量子点的尺寸形貌、晶格条纹以及红外吸收光谱等特性,然后对国内外中波红外量子点探测器进行了归纳总结,概述了探测器的器件结构、制备方法,并对器件的响应率、探测率以及响应时间等光电性能参数进行了对比分析。最后,对中波红外量子点的发展进行了展望。
    Abstract: Quantum dots (QDs) are widely used in photoelectric detection, biomedicine, new energy, and other fields because of their quantum limitations, size, and surface effects. Recent years have seen midwave infrared (MWIR) quantum dots (QDs) become a focal point in infrared research. By adjusting and controlling their size, these QDs can extend their absorption wavelengths in the infrared spectrum. Therefore, the successful preparation of infrared QD materials and devices is crucial for infrared imaging, guidance, search, and tracking. This study first introduces the preparation and synthesis technology of five types of MWIR QDs materials, HgSe, HgTe, PbSe, Ag2Se, and HgCdTe, analyzes the size and morphology, lattice fringe, and infrared absorption spectrum characteristics of the QDs, and then summarizes the domestic and foreign MWIR QDs detectors. The device structures and preparation methods of the detector are summarized, and the photoelectric performance parameters, such as responsivity, detectivity, and response time, of the detectors are compared and analyzed. Finally, the development of MWIR QDs was discussed.
  • 近年来,随着红外制冷探测器朝尺寸小、重量轻、功耗低、成本低即低SWaP-C(size, weight and power, cost)方向快速发展,集成小型制冷机的该类中波红外探测器国外已大量应用于武器热瞄镜、便携式手持热像仪、小型无人机、无人车、遥控狙击手和遥控武器站、导弹导引头等空间受限的红外系统[1]。针对该类小型探测器设计一款仅由4片透镜组成的尺寸小、重量轻、成本低的中波红外连续变焦光学系统进而生产结构紧凑、低功耗和低成本的红外变焦热像仪将在手持观瞄具、边防监视系统、小型无人系统等平台得到广泛应用。

    目前采用四片式的红外变焦光学多为双视场变焦系统。文献[2]为四片式非制冷双视场,文献[3]为四片制冷型长波双视场系统,文献[4]为4片制冷型中波双视场系统,目前仅采用4片透镜实现连续变焦的制冷型红外光学系统未见报道。

    从变焦理论分析,一般常用的机械补偿变焦系统由典型的前固定组、变倍组、补偿组、后固定组4组透镜组成。变倍组一般是负透镜,而补偿组可以是正透镜组也可以是负透镜组,前者为正组补偿系统,后者称为负组补偿系统。从光学系统像差校正难易程度、减少透镜数量、降低光学透镜成本考虑,本文采用无后固定组正组补偿变焦系统,即变焦部分由会聚目标光线的前固定组正透镜、变倍负透镜、补偿正透镜构成。为压缩前固定组物镜口径并满足100%冷屏效率,系统采用二次成像方案,利用单片正光焦度透镜将一次像再次中继成像到探测器焦平面。为压缩轴向尺寸,采用二片平面反射镜将光路U型折转,最终实现仅由4片透镜构成的轻小型中波红外连续变焦光学系统。

    机械补偿连续变焦光学系统参数求解就是确定变焦系统在满足像面稳定和焦距在一定范围内连续变化的条件下系统中各组元的焦距、间隔、位移量等参数。通过建立数学模型能方便地计算和分析变焦过程、确定变焦系统高斯光学参数[5]。二组元正组补偿连续变焦系统运动方式如图 1所示。

    图  1  正组补偿光学系统变焦模型
    Figure  1.  Principle diagrams of continuous zoom optical system with mechanical compensation

    变焦系统由于只有运动组才产生像面位移,只需抽出变倍组、补偿组加以分析。

    因变倍组f2′的移动,引起整个运动组分的像面移动为m32(1-m22)dq,因补偿组f3′的移动,引起整个运动组分的像面移动为(1-m32)dΔ。为达到像面稳定,两个运动组像面移动量的代数和必为零。

    $$ m_3^2\left(1-m_2^2\right) \mathrm{d} q+\left(1-m_3^2\right) \mathrm{d} \varDelta=0$$ (1)

    而变倍组f2′、补偿组f3′微分移动量dq、dΔ与其倍率变化dm2、dm3之间的关系为:

    $$ \mathrm{d} q = \frac{{{f_2}'}}{{m_2^2}}\mathrm{d}{m_2} $$ (2)
    $$ \mathrm{d} \varDelta=f_3{ }^{\prime} \mathrm{d} m_3 $$ (3)

    将(2)、(3)代入(1),经整理得到二组元连续变焦微分方程如下:

    $$ \frac{{1 - m_2^2}}{{m_2^2}}{f_2}'\mathrm{d}{m_2} + \frac{{1 - m_3^2}}{{m_3^2}}{f_3}'\mathrm{d}{m_3} = 0 $$ (4)

    式(4)是多变量全微分型微分方程,设U(m2, m3)为原函数,则有dU(m2, m3)=0。

    其通解为:

    $$ U({m_2}, {m_3}) = {f_2}'(\frac{1}{{{m_2}}} + {m_2}) + {f_3}'(\frac{1}{{{m_3}}} + {m_3}) = C $$ (5)

    式中:C为常量;设变倍组f2′、补偿组f3′初始状态都处于系统长焦位置,则:

    $$ m_{2}=m_{2l}\text{;}m_{3}=m_{3l} $$ (6)

    同样有:

    $$ {f_2}'(\frac{1}{{{m_{2l}}}} + {m_{2l}}) + {f_3}'(\frac{1}{{{m_{3l}}}} + {m_{3l}}) = C $$ (7)

    消去常量C,得到方程的特解:

    $$ {f_2}'(\frac{1}{{{m_2}}} - \frac{1}{{{m_{2l}}}} + {m_2} - {m_{2l}}) + {f_3}'(\frac{1}{{{m_3}}} - \frac{1}{{{m_{3l}}}} + {m_3} - {m_{3l}}) = 0 $$ (8)

    将(8)式整理得到补偿组f3′的倍率m3构成的二次方程:

    $$ m_3^2 - b{m_3} + 1 = 0 $$ (9)

    其中

    $$ b = - \frac{{{f_2}'}}{{{f_3}'}}(\frac{1}{{{m_2}}} - \frac{1}{{{m_{2l}}}} + {m_2} - {m_{2l}}) + (\frac{1}{{{m_{3l}}}} + {m_{3l}}) $$ (10)

    解得m3的两根为:

    $$ {m_{31}} = \frac{{b + \sqrt {{b^2} - 4} }}{2} $$ (11)
    $$ {m_{32}} = \frac{{b - \sqrt {{b^2} - 4} }}{2} $$ (12)

    系统参数求解过程如下:

    1)将(2)式积分并整理得到变倍组f2′的倍率m2

    $$ {m_2} = \frac{1}{{\frac{1}{{{m_{2l}}}} + \frac{{{q_2}}}{{{f_2}'}}}} $$ (13)

    2)根据求得的m2按照公式(10)求出系数b,再由(11)、(12)式解得补偿组f3′满足运动方程的两个解m31m32

    3)根据补偿组的两个解求出满足运动方程补偿像面位移的移动量Δ1Δ2

    $$ \varDelta_{1}=f_{3}′(m_{31}-m_{3l})$$ (14)
    $$ \varDelta_{2}=f_{3}′(m_{32}-m_{3l}) $$ (15)

    4)求出系统的总变倍比

    $$ {\varGamma _1} = \frac{{{m_{2l}}{m_{3l}}}}{{{m_2}{m_{31}}}} $$ (16)
    $$ {\varGamma _2} = \frac{{{m_{2l}}{m_{3l}}}}{{{m_2}{m_{32}}}} $$ (17)

    变倍组f2′每移动q2对应着Γ1Γ2,变倍组和补偿组一起同步运动直到预定的总变倍比为止,到达变倍比的要求的最终状态为系统短焦位置。根据上述连续变焦微分模型,利用(10)~(17)式,可解得各组分光焦度分配及间隔位置关系。

    针对复杂的变焦光学系统,建立模型是至关重要的环节,尽管根据(10)~(17)式可推导求解变焦系统高斯参数,但是当光学系统初始参数选择不合适, 会使得系统光焦度分配不合理导致系统像差校正难度大、间隔不合适导致各组件运动中相互碰撞等情况发生。鉴于连续变焦系统的复杂性,系统建模难度大,因此根据连续变焦理论模型编制连续变焦参数计算程序,辅助建立理想光学模型。建模后,设计工作的重点将放在选型以及评价函数的设置和动态修改上,使得设计系统快速收敛[6]。连续变焦光学系统设计流程如图 2所示。

    图  2  光学设计流程
    Figure  2.  Optical design flow chart

    首先,根据设计指标要求需要建立理想光学模型,确定每个组元的参数;再合理选型选材、设定评价函数,进入优化和全局优化;最后根据设计结果评价成像质量。其中函数优化和像质评价环节反复多次迭代,直至达到设计技术指标要求。

    中波制冷型连续变焦光学系统采用昆明物理研究所研制生产的长度方向仅119 mm的小型化制冷型中波红外640×512焦平面探测器组件,该探测器具体参数如表 1所示。连续变焦光学系统主要设计指标见表 2

    表  1  探测器参数
    Table  1.  Parameters of detector
    Detector HgCdTe
    Array size 640×512
    Pixel dimension/μm 15
    NETD/mK ≤22
    Spectral response/μm 3.7−4.8 μm
    Weight ≤380 g
    下载: 导出CSV 
    | 显示表格
    表  2  光学系统设计指标
    Table  2.  Parameters of optical system design
    Working waveband/μm 3.7 to 4.8
    Zoom 10:01
    Field of view 20°×16° to 2.0°×1.6°
    F# 4
    Focal length/mm 27.0~275
    Working temperature/℃ -40 to 60
    下载: 导出CSV 
    | 显示表格

    首先,按照系统指标要求,根据连续变焦理论模型编制连续变焦正组补偿参数计算程序求解变焦光学系统各组元光焦度分配及位置间隔关系。在系统初始参数取值上主要考虑以下几点:

    1)系统采用二次成像,既可以压缩前固定组直径又可以满足100%冷屏效率。中继组初始倍率取为-1×,前端变焦核心按照系统实际变焦范围进行取值,无需缩放;

    2)系统无后固定组,在理论求解中将后固定组倍率取为1×即将后固定组定为无光焦度的虚拟面;

    3)为压缩系统变焦过程中变倍组、补偿组位移量,变倍组长焦初始倍率取较大的倍率值,以符合最速变焦理论;

    4)考虑光路U型折转,补偿组和中继组之间需较大的空间安置两片平面反射镜,则补偿组取较大的焦距值;

    5)系统处于短焦位置时前固定组与变倍组应留出足够的间隔,使两组透镜不至于相碰,初始值设为0.55,补偿组与无光焦度后固定组虚拟面距离初始设为0.55。

    利用计算程序,通过反复调整系统初始参数,观察组元间隔、光焦度分配是否合适,最终确定系统初始值为:

    $$ \begin{gathered} f_{2}′=-1、f_{3}′=1.62、m_{2l}=-1.45、\\m_{3l}=-1.34、d_{12d}=0.55、d_{34d}=0.55 \end{gathered} $$

    表 3为连续变焦光学系统参数简易计算程序按照上述初始值计算得到的5个视场位置的变焦间隔参数分配结果。

    表  3  变焦系统初始间隔参数
    Table  3.  Initial spacing parameters of optical system
    Focal length/mm 275 215 150 78.6 25.9
    f1/f2 spacing/mm 83.49 80.06 74.56 59.44 18.90
    f2/f3 spacing/mm 13.02 24.01 38.57 68.69 125.94
    f3/f4 spacing/mm 67.23 59.67 50.61 35.61 18.90
    下载: 导出CSV 
    | 显示表格

    其次,将上述程序计算的变焦光学系统各组元光焦度及间隔位置参数输入ZEMAX光学设计程序,得到系统近轴光学结构,如图 3所示。通过近轴光学结构分析,系统在各位置的焦距值与计算值吻合、总长一致、间隔布局合理、变焦曲线连续,验证程序计算结果正确,可进入下一步选型工作。

    图  3  近轴光学系统
    Figure  3.  Configuration of paraxial optical system

    再次,考虑各组元材料与调焦镜的选取,由于系统需满足-40℃~+60℃工作环境下成像清晰要求,按照光学系统无热化设计理论,系统的光焦度分配、材料选取、元件间隔都要满足光焦度、消色差、消热差3个方程[7]

    $$ \sum\limits_{i = 1}^j {{h_i}{\varphi _i}} = \varphi $$ (18)
    $$ {\left( {\frac{1}{{{h_1}\varphi }}} \right)^2}\sum\limits_{i = 1}^j {h_i^2{\varphi _i}{\theta _i}} = 0 $$ (19)
    $$ {\left( {\frac{1}{{{h_1}\varphi }}} \right)^2}\sum\limits_{i = 1}^j {h_i^2{\varphi _i}{\chi _i}} = \sum\limits_{i = 1}^j {{\alpha _i}{L_i}} $$ (20)

    式中:hiϕiθiχi分别为系统各透镜组近轴光线高度、光焦度、色差系数及热差系数;h1为第一透镜近轴光线高;ϕ为系统总光焦度;αi为各透镜间隔镜筒材料的线膨胀系数;Li为各间隔镜筒长度。

    该系统采用分步设计技术实现系统连续变焦无热化。首先选取满足上述(18)(19)公式的光焦度和材料分配,实现系统常温状态连续变焦成像清晰及高低温情况下离焦量的线性变化,系统光学材料主要选用硅单晶、锗单晶及硒化锌。其次利用主动补偿技术使系统满足(20)式要求,由于系统透镜数量少,变倍组、补偿组采用凸轮轨道变焦,中继组的轴向移动会产生变倍效果即系统视场焦距发生变化,因此采用前固定组轴向移动来进行主动调焦消热。通过上述无热化设计方法,光学系统在-40℃~+60℃温度范围内保持其性能基本不变。

    最后,设置多重结构,合理设计像差评价函数,不断调整优化。为提升连续变焦系统各视场成像清晰度要求,通过设置多个高次非球面和二元衍射面,以提供更多的自由度,有利于球差、色差、像散等各类像差的校正。

    轻小型中波红外连续变焦光学系统最终设计结果如图 4所示,从上到下依次为长焦275 mm、中焦100 mm、短焦27 mm的系统图。

    图  4  连续变焦光学系统
    Figure  4.  Configuration of continuous zoom optical system

    系统前固定组采用硅单晶材料用于会聚目标景物光线、压缩变倍组透镜尺寸;变倍组采用锗单晶材料,利用锗单晶高折射率、高色散的特性实现大倍率的变焦;补偿组采用硒化锌材料主要利用其较低的温度折射率系数使其在高低温工作环境只产生较小的离焦量以便实时补偿;中继组选择具有低的温度折射率系数、低色散的硅单晶材料平衡前端变焦核的残留色差。

    整个光学系统由4片透镜、两个平面反射镜组成,其中最大透镜为第一透镜其加工直径为71 mm,平面反射镜U型折转后光学系统轴向尺寸长度172 mm,横向尺寸宽度108 mm,光学零件总重量为64 g。该系统光学透镜数量少、重量轻,光路紧凑体积小,冷屏效率100%,适配小型化制冷探测器符合连续变焦光学系统轻小型设计理念。

    由于二元衍射面在消热差、消色差方面的优异特性,系统采用了两个二元衍射面用于减少透镜数量、简化系统设计、提高系统成像质量。

    在补偿组透镜硒化锌材料上引入的二元衍射面参数为Norm Radius=15 mm,A1=-33.416,A2=4.580。经计算得到二元衍射面环带深度随透镜径向的变化如图 5所示。硒化锌二元面环带数为4,最大环带深度2.918 μm,最小环带间隔宽度为2.06 mm。该面型环带间隔宽、加工环带数量少,易于单点金刚石车削加工。

    图  5  硒化锌基底二元面环带与半径的关系
    Figure  5.  Relationship between the ring depth and radius of the ZnSe binary optical element

    在中继组硅单晶材料引入的二元衍射面参数为Norm Radius=16 mm,A1=-60.402,A2=-1.254。其环带深度随透镜径向的变化如图 6所示。硅透镜二元面环带数为9,最大环带深度1.72 μm,最小环带间隔宽度为0.86 mm。该透镜由于材料硬、环带多相对加工难度大,目前昆明物理所光学中心采用单点金刚石车削加工工艺,能制造出满足指标要求的硅基底二元光学元件。

    图  6  硅基底二元面环带与半径的关系
    Figure  6.  Relationship between the ring depth and radius of the silicon binary optical element

    本文应用动态光学理论[8],根据像移补偿公式计算补偿组运动曲线。由于变焦组和补偿组均为沿光轴的一维移动,稳像方程为:

    $$ {\beta _{2m}}{\beta _2}(1 - {\beta _{1m}}{\beta _1}){q_1} + (1 - {\beta _{2m}}{\beta _2}){q_2} = 0 $$ (21)

    式中:β1为变倍组初始位置的垂轴放大率;β1m为变倍组运动后的垂轴放大率;β2为补偿组初始位置的垂轴放大率;β2m补偿组运动后的垂轴放大率;q1为变倍组沿光轴位移量;q2为补偿组沿光轴位移量。

    式中:

    $$ {\beta _{1m}} = \frac{{{\beta _1}{f_1}'}}{{{f_1}' - {\beta _1}{q_1}}} $$ (22)
    $$ {\beta _{2m}} = \frac{{{\beta _2}{f_2}'}}{{{f_2}' + (1 - {\beta _1}{\beta _{1m}}){\beta _2}{q_2} - {\beta _2}{q_2}}} $$ (23)

    由(21)式~(23)式可得出q1q2的运动关系,即:

    $$ Aq_{2}^{2}+Bq_{2}+C=0$$ (24)

    式中:

    $$ A=(f_{1}′-β_{1}q_{1})β_{2}\text{;} $$
    $$ \begin{align} B=&β_{1}β_{2}q_{1}^{2}+[f_{2}′(1-β_{2}^{2})β_{1}-f_{1}′(1-β_{1}^{2})β_{2}]q_{1}- \\&f_{1}′f_{2}′(1-β_{1}^{2}) \end{align}$$
    $$ C=β_{2}^{2}f_{2}′[β_{1}q_{1}-f_{1}′(1-β_{1}^{2})]q_{1} $$

    得到:

    $$ {q_2} = \frac{{ - B \pm \sqrt {{B^2} - 4AC} }}{{2A}} $$ (25)

    根据上述求解公式计算该变焦系统凸轮曲线如图 7所示。变倍组最大行程为28.6 mm、补偿组最大行程35 mm;补偿组曲线变化平滑,有利于凸轮轨道加工。

    图  7  连续变焦凸轮曲线
    Figure  7.  Cam curves of continuous zoom optical system

    系统3个焦距状态下的光学传递函数(MTF)如图 8所示。在3个焦距状态下的系统MTF满足使用要求,光学系统成像质量清晰。

    图  8  光学系统传函曲线
    Figure  8.  MTF curves of continuous zoom optical system

    系统3个焦距状态下的点列图如图 9所示。各视场RMS(root mean square)均小于一个像素,最大弥散斑RMS半径为12.6 μm,小于像元尺寸;最大弥散斑几何半径为24.5 μm,与系统艾里斑半径20.9 μm相当。系统成像质量良好,满足使用要求。

    图  9  光学系统点列图
    Figure  9.  Spot diagrams of continuous zoom optical system

    系统畸变情况如图 10所示,在长焦端小视场位置时,最大畸变量为1.2%,在短焦端大视场位置时的最大畸变量为2.4%,该变焦系统畸变对连续成像无明显影响。

    图  10  光学系统畸变
    Figure  10.  Optical distortion diagrams of continuous zoom optical system

    在高低温工作环境中,系统采用轴向移动前固定组进行主动调焦消热。系统长焦端受环境温度变化,成像质量影响较大,本文主要分析长焦275 mm在高低温下经补偿后的系统成像质量。图 11为系统在高低温下长焦经补偿后的系统调制传递函数。图 12为系统在高低温下长焦经补偿后的系统点列图。从高低温传函图及点列图中看出系统在-40℃~60℃范围内成像质量良好,满足使用要求。

    图  11  系统长焦时高低温下光学传递函数
    Figure  11.  MTF curves of continuous zoom optical system at high and low temperatures
    图  12  系统长焦时高低温下点列图
    Figure  12.  Spot diagrams of continuous zoom optical system at high and low temperatures

    基于小型化制冷中波640×512、像元间距15 μm的焦平面探测器,设计一款具有SWaP-C特征的正组补偿连续变焦光学系统。系统由4片透镜两片平面反射镜组成,F#为4、视场变化范围为20°×16°~2.0°×1.6°,变倍比为10×、U型折叠后系统包络尺寸为172 mm×108 mm、最大物镜口径71 mm、光学零件总重量64 g、零件加工工艺成熟,变焦凸轮曲线平滑,在-40℃~60℃范围内保持较好的成像质量。该轻小型中波红外连续变焦光学系统在导航、搜索、跟踪、警戒、侦察等领域具有广阔的市场前景。

  • 图  1   中波红外量子点探测技术发展历程

    Figure  1.   Developments of MWIR quantum dot detection technology

    图  2   HgSe CQDs的形貌结构、PL光谱及其吸收光谱:HgSe CQDs的(a) TEM图像;(b) 不同反应时间的吸收光谱以及(c) PL光谱[26];HgSe CQD的(d)15.5 nm粒径TEM图像和(e)不同尺寸的吸收光谱[20];(f)HgSe CQDs的TEM图像[24];(g)HgSe CQDs的TEM图像和(h)吸收光谱[25];(i)不同合成条件下的HgSe和HgTe CQDs的吸收光谱[23]

    Figure  2.   Morphology structures, PL spectra and absorption spectrum of HgSe CQDs: (a) TEM image, (b) Absorption spectrum with different reaction times and (c) PL spectra of HgSe CQDs[26]; (d) 15.5 nm particle size TEM image and (e) Absorption spectrum with different particle sizes of HgSe CQDs[20]; (f) TEM image of HgSe CQDs[24]; (g) TEM image and (h) Absorption spectrum of HgSe CQDs[25]; (i) Absorption spectra of HgSe and HgTe CQDs with different synthesis conditions[23]

    图  3   HgTe、PbSe和Ag2Se CQDs的形貌结构、粒径分布及其吸收光谱:(a)HgTe Ncs的TEM图像和吸收光谱[47];HgTe CQDs的(b)TEM图像和(c)吸收光谱[19];(d)不同尺寸HgTe CQDs的吸收光谱[21];HgTe CQDs的(e)TEM图像,插图为HRTEM图像和(f)粒径分布[18];PbSe CQDs的(g)TEM图像及其(h)粒径分布[32];(i)Ag2Se CQDs的粒径分布[35]

    Figure  3.   Morphology structures, particle size distributions and absorption spectra of HgTe, PbSe and Ag2Se CQDs: (a) TEM images and absorption spectrum of HgTe Ncs[47]; (b) TEM image and (c) Absorption spectrum of HgTe CQDs[19]; (d) Absorption spectrum of HgTe CQDs with different sizes[21]; (e) TEM image, insert is HRTEM image and (f) Particle size distribution of HgTe CQDs[18]; (g) TEM image and (h) Particle size distribution of PbSe CQDs[32]; (i) Particle size distribution of Ag2Se CQDs[35]

    图  4   Ag2Se和HgCdTe CQDs的形貌结构及其吸收光谱:Ag2Se CQDs的(a)TEM图像与(b)吸收光谱[36];(c)7.3 nm的Ag2Se CQDs的TEM图像,插图为选区电子衍射图[35];(d)不同粒径尺寸Ag2Se CQDs薄膜的FTIR吸收光谱[35];HgCdTe CQD的(e)TEM图像和(f)吸收光谱[30];HgCdTe CQD的(g)TEM图像;(h)HRTEM图像和(i)吸收光谱[29]

    Figure  4.   Morphology structures and absorption spectrum of Ag2Se and HgCdTe CQDs: (a) TEM images and (b) Absorption spectrum of Ag2Se CQDs[36]; (c) TEM image of 7.3 nm Ag2Se CQDs, insert is a selection electron diffraction pattern[35]; (d) FTIR absorption spectrum of Ag2Se CQDs films with different particle sizes[35]; (e) TEM image and (f) Absorption spectrum of HgCdTe CQDs[30]; (g) TEM image, (h) HRTEM image and (i) absorption spectrum of HgCdTe CQDs[29]

    图  5   HgTe CQDs和SMLQD-QCD中波红外探测器的性能:(a)量子级联和表面等离子体耦合结构的中波红外反射和增强光谱[50];(b)HgTe CQDs的首次中波红外成像图[52];四色HgTe CQDs探测器的(c)探测率曲线和(d)响应率曲线[16];SMLQD-QCD的(e)器件结构图;(f)响应率曲线;(g)不同温度的暗电流曲线以及(h)探测率曲线[61];(i)单层量子点p-i-n器件的响应率曲线[64]

    Figure  5.   Performances of MWIR detector for HgTe CQDs and SMLQD-QCD: (a) MWIR reflection and enhancement spectrum of QCD and surface plasmon coupled structure[50]; (b) First MWIR imaging of HgTe CQDs[52]; (c) Detectivity curve and (d) Responsivity curves of four-color HgTe CQDs detector[16]; (e) Structure diagram, (f) Responsivity curves, (g) Dark current curves with different temperatures, and (h) Detectivity curves of MLQD-QCD[61]; (i) Responsivity curves of single layer quantum dot p-i-n device[64]

    图  6   HgTe CQDs和PbSe CQDs中波红外探测器的性能测试:不同截止波长HgTe CQDs器件随温度变化的响应率曲线(a)样品A为2.8 μm;(b)样品B为3.4 μm,(c)样品C为5.3 μm以及(d)样品C的暗电流曲线,插图为70 K和210 K下的I-V曲线[18];(e)HgTe CQDs中波红外探测器5 V偏压下的探测率[10];4.8 μm像元的HgTe CQDs器件不同偏压下的(f)响应率曲线和(g)探测率曲线[21];(h)不同尺寸HgTe CQDs薄膜的吸收光谱[20];(i)PbSe CQDs上转换中波红外光电探测器的响应率曲线[65]

    Figure  6.   Performances testing of HgTe CQDs and PbSe CQDs MWIR detector: Responsivity curves of different cut-off wavelength HgTe CQDs device with changed temperatures (a) Sample A 2.8 μm, (b) Sample B 3.4 μm, (c) Sample C 5.3 μm and (d) Dark current curves of sample C, insert is the I-V curves at 70 K and 210 K[18]; (e) Detectivity of HgTe CQD MWIR detector at 5 V bias[10]; (f) Responsivity curves and (g) Detectivity curves of 4.8 μm pixel HgTe CQDs device at different bias voltage[21]; (h) Absorption spectra of HgTe CQDs films with different size[20]; (i) Responsivity curves of PbSe CQDs up-conversion mid-wave infrared photodetector[65]

    图  7   HgTe CQDs中波红外探测器的器件结构及其性能:HgTe CQDs器件的(a)结构图和不同温度下的(b)光电流曲线,(c)响应率曲线,(d)探测率曲线和(e)暗电流曲线[56];HgTe CQDs光导器件的(f)响应率曲线和(g)探测率曲线[54];等离激元增强HgTe CQDs探测器的(h)器件结构和(i)响应率曲线[58]

    Figure  7.   Device structures and performances of HgTe CQDs MWIR detectors: (a) Structure diagram and (b) Photocurrent curves, (c) Responsivity curves, (d) Detectivity curves and (e) Dark current curves of HgTe CQDs device with different temperatures[56]; (f) Responsivity curves and (g) Detectivity curves of HgTe CQDs photoconductive device[54]; (h) Device structure and (i) Responsivity curve of plasmon enhanced HgTe CQDs detector[58]

    图  8   HgTe、HgSe CQDs中波红外探测器的器件结构、性能及焦平面成像:(a)SWIR/MWIR双波段HgTe CQDs探测器的器件结构[53];不同偏压下4.2 μm HgSe CQDs器件的(b)光电流曲线和(c)响应率曲线[25];(d)SWIR/MWIR双波段HgTe CQDs探测器在不同温度下的探测率曲线[53];(e)9 V偏压下4个不同波长的HgSe CQDs器件的响应率曲线[25];(f)具有纳米片结构的4.2 μm HgSe CQDs探测器的响应率曲线[25];HgTe/HgSe CQDs复合光电二极管的(g)器件结构和(h)I-V曲线[23];(i)640×512 HgTe CQDs中波红外焦平面热成像[67]

    Figure  8.   Device structures, performances, and FPA imaging of HgTe and HgSe CQDs MWIR detectors: (a) Device structure of SWIR/MWIR dual-band HgTe CQDs detector[53]; (b) Photocurrent curves and (c) Responsivity curves of 4.2 μm HgSe CQDs devices[25]; (d) Detectivity curves of SWIR/MWIR dual-band HgTe CQDs detector under different bias voltages[53]; (e) Responsivity curves of four devices with different wavelength at 9 V bias voltage[25]; (f) Responsivity curves of 4.2 μm HgSe CQDs detector with nano-disks[25]; (g) Device structure and (h) I-V curves of HgTe/HgSe CQDs mixed photodiode[23]; (i) 640×512 HgTe CQDs MWIR FPA thermal imaging[67]

    表  1   不同中波红外量子点材料及其主要性能指标

    Table  1   Different MWIR quantum dot materials and their main performance merits

    Quantum dot materials Preparation method Grain size/nm Absorption wavelength/µm Ref. Quantum dot materials Preparation method Grain size/nm Absorption wavelength/µm Ref.
    HgTe Water-based synthetic 3-12 1.2-3.7 [13] HgCdTe Hot injection 8-11 2.2-5 [28]
    Two-step injection 14.5 1.3-5 [14] ~14 3 [29]
    Colloidal atomic layer deposition (c-ALD) 9-10 5 [15] Chemical synthesis 15-16 2-7 [30]
    Hot injection 10-16 2-5 [16] PbSe Chemical synthesis 10-17 4.1 [31]
    5-15 2.2-3.3 [17] Hot injection ~18 3.3-3.5 [32]
    6-12 2.8-7 [18] 30 2.5-5 [33]
    5-15 1.5-5 [19] 20-100 1-25 [34]
    ~15 3-5 [20] Ag2Se Hot injection 7.3 5.6 [35]
    ~20 2-10 [21] 5-6 2-5 [36]
    HgSe - 10 3-20 [22] 5-28 4.8 [37]
    Hot injection 4-6 2-5 [23] - 4.1 [38]
    4.7 3.3-5 [24] - 5 [39]
    10-15 3-10 [25] 8-10 3-5 [40]
    6.2 3-5 [26] 5 4.2 [41]
    5.4 4.2 [27] 5.5 4.2 [42]
    下载: 导出CSV

    表  2   中波红外量子点探测器件的量子点薄膜的制备方法、器件结构及其主要性能参数[53-63]

    Table  2   Preparation method, device structure and main performance parameters of quantum dot film for MWIR quantum dot detector[53-63]

    Preparation method of QD thin film Device structure Response wavelength/µm R/(A/W) D*/Jones Response time/µs Ref.
    Spray-coating HgTe QDs/Au/Cr/PET 2-5 0.9 8×109 - [16]
    Spin-coating QDs/Au/Si/SiO2 ~7 - 107-109 0.2 [17]
    Au/HgSe-HgTe/Al/Sapphire 4.4 - 1.5×109 < 0.5 [26]
    Pt/HgTe CQDs/HgSe 4.2 1.45×10-3 - - [25]
    Au/HgCdTe CQDs/p-Si/Al 3.5 - 1.6×108 - [30]
    Ag/Ag2Se QDs/PbS QD/Ag2Se QDs/Ag/Cr/Sapphire 4.2 13.3 3×105 - [41]
    Al/ZnO/ Ag2Se CQDs-PbS CQDs/MoOx/Au/Cr/Glass 4.2 19 7.8×106 - [42]
    Au/Bi2Se3/HgTe CQDs/Ag2Te/HgTe CQDs/Bi2Se3/ITO/Al2O3 3-5 - 3×1010 - [53]
    PMMA/HgTe CQDs/SiO2/Si 5 0.23 5.4×1010 2.9 [54]
    Drop-casting Pt/HgTe CQDs/Pt/Glass 2.8-7 > 0.1 2×109 < 0.1 [18]
    Pt/HgTe CQDs/Pt 1.5-5 ≈1×10-3 1010 - [19]
    Pt/HgSe CQDs/Pt/ZnSe 2.5-5 5×10-4 8.5×108 - [26]
    Ag2Se CQDs/ZnO/Al2O3/Glass 2-5 - - - [36]
    Au/Ag2Se CQDs/SiO2/Si 4.1 0.35 - - [33]
    HgCdTe CQD/Au/Sapphire 2.5-5 8.9×10-4 108 - [55]
    HgTe CQDs/Si 3-5 0.15-0.25 2×109 - [10]
    Au/Ag2Te CQDs/HgTe CQDs/ ITO/Al2O3 3.8-4.8 0.38 1.2×1011 1.3 [56]
    Pt/HgTe CQDs/Pt 3.5 0.1 3.5×1010 - [57]
    Layer-by-layer deposition Pd/HgTe CQDs/Ti/SiO2/Si ~6.5 1.8×10-3 1.3×109 < 5 [20]
    HgTe CQDs/PMMA/Si/SiO2 2-10 ~0.1 2×107 - [21]
    Au/Ag2Se QDs/SiO2/Si 4.8 8×10-3 - - [37]
    Au/Ag2Se CQDs/SiO2/Si 5 1.66 - - [39]
    HgTe CQDs/ROIC/LCC 3.6 - 2×1010 - [51]
    Au/SiO2/Au+ITO/HgTe QDs/Plasmonic nano-disks/ITO/Al2O3 ~4.5 1.62 4×1011 - [58]
    PbS QDs/Au/CaF2 5-9 1.5×10-4 4×104 - [59]
    MBE P3-P2-P1-Hg1-xCdxTe 2.5-5.1 - 2.02×1011 - [60]
    n-GaAs/SML-QDS/DFLS/n-GaAs/Si 5-8 5.9×10-4 3×1010 - [61]
    Au/Ti/In0.53Ga0.47As/In0.52Al0.48As/Au/Ti/InP 5.8-10.4 6×10-4 2.6×108 - [62]
    Dip-coating Ag/HgTe CQDs/NiCr/CaF2 2.2-6.7 > 0.38 > 1010 - [63]
    下载: 导出CSV
  • [1] 钟和甫, 唐利斌, 余黎静, 等. 量子点合成及其光电功能薄膜研究进展[J]. 红外技术, 2022, 44(2): 103. http://hwjs.nvir.cn/article/id/970e7470-f304-4c45-829c-2b426518c568

    ZHONG H F, TANG L B, YU L J, et al. Research progress of quantum dots synthesis and their photoelectric functional films[J]. Infrared Technology, 2022, 44(2): 103. http://hwjs.nvir.cn/article/id/970e7470-f304-4c45-829c-2b426518c568

    [2]

    ZHANG W, LIM H, Tsao S, et al. InAs quantum dot infrared photodetectors (QDIP) on InP by MOCVD[C]//Infrared Spaceborne Remote Sensing XII. of SPIE, 2004, 5543: 22-30.

    [3]

    Gunapala S D, Bandara S V, Hill C J, et al. Quantum wells to quantum dots: 640×512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array[C]//Infrared Detectors and Focal Plane Arrays Ⅷ. of SPIE, 2006, 6295: 629501.

    [4]

    Vatansever F, Hamblin M R. Far infrared radiation (FIR): its biological effects and medical applications[J]. Photonics & Lasers in Medicine, 2012, 1(4): 255-266.

    [5]

    Lhuillier E, Guyot-Sionnest P. Recent progresses in mid infrared nanocrystal optoelectronics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(5): 1-8.

    [6]

    Rogalski A. Recent progress in infrared detector technologies[J]. Infrared Physics & Technology, 2011, 54(3): 136-154.

    [7]

    LU H, Carroll G M, Neale N R, et al. Infrared quantum dots: progress, challenges, and opportunities[J]. ACS Nano, 2019, 13(2): 939-953.

    [8]

    LIU D, WEN S, GUO Y, et al. Synthesis of HgTe colloidal quantum dots for infrared photodetector[J]. Materials Letters, 2021, 291: 129523. DOI: 10.1016/j.matlet.2021.129523

    [9]

    Nakotte T, Munyan S G, Murphy J W, et al. Colloidal quantum dot based infrared detectors: extending to the mid-infrared and moving from the lab to the field[J]. Journal of Materials Chemistry C, 2022, 10(3): 790-804. DOI: 10.1039/D1TC05359K

    [10]

    Keuleyan S, Lhuillier E, Brajuskovic V, et al. Mid-infrared HgTe colloidal quantum dot photodetectors[J]. Nature Photonics, 2011, 5(8): 489-493. DOI: 10.1038/nphoton.2011.142

    [11]

    ZHANG H, Peterson J C, Guyot-Sionnest P. Intraband transition of HgTe nanocrystals for long-wave infrared detection at 12 μm[J]. ACS Nano, 2023, 17(8): 7530-7538. DOI: 10.1021/acsnano.2c12636

    [12]

    HUO N, Gupta S, Konstantatos G. MoS2-HgTe quantum dot hybrid photodetectors beyond 2 μm[J]. Advanced Materials, 2017, 29(17): 1606576. DOI: 10.1002/adma.201606576

    [13]

    Kovalenko M V, Kaufmann E, D Pachinger, et al. Colloidal HgTe nanocrystals with widely tunable narrow band gap energies: from telecommunications to molecular vibrations[J]. Journal of the American Chemical Society, 2006, 128(11): 3516-3523. DOI: 10.1021/ja058440j

    [14]

    Keuleyan S, Lhuillier E, Guyot-Sionnest P. Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and detection[J]. Journal of the American Chemical Society, 2011, 133(41): 16422-16424. DOI: 10.1021/ja2079509

    [15]

    SHEN G, Guyot-Sionnest P. HgTe/CdTe and HgSe/CdX (X= S, Se, and Te) core/shell mid-infrared quantum dots[J]. Chemistry of Materials, 2018, 31(1): 286-293.

    [16]

    Cryer M E, Halpert J E. 300 nm spectral resolution in the mid-infrared with robust, high responsivity flexible colloidal quantum dot devices at room temperature[J]. ACS Photonics, 2018, 5(8): 3009-3015. DOI: 10.1021/acsphotonics.8b00738

    [17]

    Lhuillier E, Keuleyan S, Liu H, et al. Colloidal HgTe material for low-cost detection into the MWIR[J]. Journal of Electronic Materials, 2012, 41(10): 2725-2729. DOI: 10.1007/s11664-012-2006-9

    [18]

    Lhuillier E, Keuleyan S, Rekemeyer P, et al. Thermal properties of mid-infrared colloidal quantum dot detectors[J]. Journal of Applied Physics, 2011, 110(3): 033110. DOI: 10.1063/1.3619857

    [19]

    Lhuillier E, Keuleyan S, Guyot-Sionnest P. Colloidal quantum dots for mid-IR applications[J]. Infrared Physics & Technology, 2013, 59: 133-136.

    [20]

    Keuleyan S E, Guyot-Sionnest P, Delerue C, et al. Mercury telluride colloidal quantum dots: electronic structure, size-dependent spectra, and photocurrent detection up to 12 μm[J]. ACS Nano, 2014, 8(8): 8676-8682. DOI: 10.1021/nn503805h

    [21]

    TANG X, TANG X B, Lai K W C. Scalable fabrication of infrared detectors with multispectral photoresponse based on patterned colloidal quantum dot films[J]. ACS Photonics, 2016, 3(12): 2396-2404. DOI: 10.1021/acsphotonics.6b00620

    [22]

    Lhuillier E, Scarafagio M, Hease P, et al. Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz[J]. Nano Letters, 2016, 16(2): 1282-1286. DOI: 10.1021/acs.nanolett.5b04616

    [23]

    Livache C, Martinez B, Goubet N, et al. A colloidal quantum dot infrared photodetector and its use for intraband detection[J]. Nature Communications, 2019, 10(1): 1-10. DOI: 10.1038/s41467-018-07882-8

    [24]

    ZHAO X, MU G, TANG X, et al. Mid-IR intraband photodetectors with colloidal quantum dots[J]. Coatings, 2022, 12(4): 467. DOI: 10.3390/coatings12040467

    [25]

    TANG X, WU G F, Lai K W C. Plasmon resonance enhanced colloidal HgSe quantum dot filterless narrowband photodetectors for mid-wave infrared[J]. Journal of Materials Chemistry C, 2017, 5(2): 362-369. DOI: 10.1039/C6TC04248A

    [26]

    DENG Z, Jeong K S, Guyot-Sionnest P. Colloidal quantum dots intraband photodetectors[J]. ACS Nano, 2014, 8(11): 11707-11714. DOI: 10.1021/nn505092a

    [27]

    Khalili A, Cavallo M, Dang T H, et al. Mid-wave infrared sensitized InGaAs using intraband transition in doped colloidal Ⅱ-Ⅵ nanocrystals[J]. The Journal of Chemical Physics, 2023, 158(9): 094702. DOI: 10.1063/5.0141328

    [28]

    Balakrishnan J, Sreeshma D, Siddesh B M, et al. Ternary alloyed HgCdTe nanocrystals for short-wave and mid-wave infrared region optoelectronic applications[J]. Nano Express, 2020, 1(2): 020015. DOI: 10.1088/2632-959X/aba230

    [29]

    Chatterjee A, Abhale A, Pendyala N, et al. Group Ⅱ-Ⅵ semiconductor quantum dot heterojunction photodiode for mid wave infrared detection[J]. Optoelectronics Letters, 2020, 16(4): 290-292. DOI: 10.1007/s11801-020-9155-5

    [30]

    Chatterjee A, Balakrishnan J, Pendyala N B, et al. Room temperature operated HgCdTe colloidal quantum dot infrared focal plane array using shockwave dispersion technique[J]. Applied Surface Science Advances, 2020, 1: 100024. DOI: 10.1016/j.apsadv.2020.100024

    [31]

    Pietryga J M, Schaller R D, Werder D, et al. Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots[J]. Journal of the American Chemical Society, 2004, 126(38): 11752-11753. DOI: 10.1021/ja047659f

    [32]

    Palosz W, Trivedi S, DeCuir Jr E, et al. Synthesis and characterization of large PbSe colloidal quantum dots[J]. Particle & Particle Systems Characterization, 2021, 38(6): 2000285.

    [33]

    Dolatyari M, Rostami A, Mathur S, et al. Trap engineering in solution processed PbSe quantum dots for high-speed MID-infrared photo- detectors[J]. Journal of Materials Chemistry C, 2019, 7(19): 5658-5669. DOI: 10.1039/C8TC06093B

    [34]

    PENG S, LI H, ZHANG C, et al. Promoted mid-infrared photodetection of PbSe film by iodine sensitization based on chemical bath deposition[J]. Nanomaterials, 2022, 12(9): 1391. DOI: 10.3390/nano12091391

    [35]

    Sahu A, Khare A, Deng D D, et al. Quantum confinement in silver selenide semiconductor nanocrystals[J]. Chemical Communications, 2012, 48(44): 5458-5460. DOI: 10.1039/c2cc30539a

    [36]

    Park M, Choi D, Choi Y, et al. Mid-infrared intraband transition of metal excess colloidal Ag2Se nanocrystals[J]. ACS Photonics, 2018, 5(5): 1907-1911. DOI: 10.1021/acsphotonics.8b00291

    [37]

    QU J, Goubet N, Livache C, et al. Intraband mid-infrared transitions in Ag2Se nanocrystals: potential and limitations for Hg-free low-cost photodetection[J]. The Journal of Physical Chemistry C, 2018, 122(31): 18161-18167. DOI: 10.1021/acs.jpcc.8b05699

    [38]

    Hafiz S B, Scimeca M R, Zhao P, et al. Silver selenide colloidal quantum dots for mid-wavelength infrared photodetection[J]. ACS Applied Nano Materials, 2019, 2(3): 1631-1636. DOI: 10.1021/acsanm.9b00069

    [39]

    Hafiz S B, Al Mahfuz M M, Scimeca M R, et al. Ligand engineering of mid-infrared Ag2Se colloidal quantum dots[J]. Physica E: Low-dimensional Systems and Nanostructures, 2020, 124: 114223. DOI: 10.1016/j.physe.2020.114223

    [40]

    Son J, Choi D, Park M, et al. Transformation of colloidal quantum dot: from intraband transition to localized surface plasmon resonance[J]. Nano Letters, 2020, 20(7): 4985-4992. DOI: 10.1021/acs.nanolett.0c01080

    [41]

    Hafiz S B, Al Mahfuz M M, Ko D K. Vertically stacked intraband quantum dot devices for mid-wavelength infrared photodetection[J]. ACS Applied Materials & Interfaces, 2020, 13(1): 937-943.

    [42]

    Hafiz S B, Al Mahfuz M M, Lee S, et al. Midwavelength infrared p-n heterojunction diodes based on intraband colloidal quantum dots[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 49043-49049.

    [43] 王令仕. 中红外HgSe胶体量子点的合成及其薄膜特性的研究[D]. 郑州: 河南大学, 2022.

    WANG Lingshi. Synthesis of mid-infrared HgSe colloidal quantum dots and study of their thin film properties [D]. Zhengzhou: Henan University, 2022.

    [44]

    Selvig E, Hadzialic S, Skauli T, et al. Growth of HgTe nanowires[J]. Physica Scripta, 2006, 2006(T126): 115.

    [45]

    Rogach A, Kershaw S V, Burt M, et al. Colloidally prepared HgTe nanocrystals with strong room‐temperature infrared luminescence[J]. Advanced Materials, 1999, 11(7): 552-555. DOI: 10.1002/(SICI)1521-4095(199905)11:7<552::AID-ADMA552>3.0.CO;2-Q

    [46]

    Harrison M T, Kershaw S V, Rogach A L, et al. Wet chemical synthesis of highly luminescent HgTe/CdS core/shell nanocrystals[J]. Advanced Materials, 2000, 12(2): 123-125. DOI: 10.1002/(SICI)1521-4095(200001)12:2<123::AID-ADMA123>3.0.CO;2-H

    [47]

    Kovalenko M V, Kaufmann E, Pachinger D, et al. Colloidal HgTe nanocrystals with widely tunable narrow band gap energies: from telecommunications to molecular vibrations[J]. Journal of the American Chemical Society, 2006, 128(11): 3516-3517. DOI: 10.1021/ja058440j

    [48]

    Wise F W. Lead salt quantum dots: the limit of strong quantum confinement[J]. Accounts of Chemical Research, 2000, 33(11): 773-780. DOI: 10.1021/ar970220q

    [49] 李燕兰, 高达, 李震, 等. 大尺寸碲镉汞材料研究现状与趋势[J]. 激光与红外, 2022, 52(8): 1204-1210. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202208016.htm

    LI Y L, GAO D, LI Z, et al. Status and development trends of large area HgCdTe[J]. Laser & Infrared, 2022, 52(8): 1204-1210. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202208016.htm

    [50]

    LI L, XIONG D, WEN J, et al. A surface plasmonic coupled mid-long-infrared two-color quantum cascade detector[J]. Infrared Physics & Technology, 2016, 79: 45-49.

    [51]

    Ciani A J, Pimpinella R E, Grein C H, et al. Colloidal quantum dots for low-cost MWIR imaging[C]//Infrared Technology and Applications XLII of SPIE, 2016, 9819: 333-341.

    [52]

    Buurma C, Pimpinella R E, Ciani A J, et al. MWIR imaging with low-cost colloidal quantum dot films[C]//Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications of SPIE, 2016, 9933: 993303.

    [53]

    TANG X, Ackerman M M, CHEN M, et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes[J]. Nature Photonics, 2019, 13(4): 277-282. DOI: 10.1038/s41566-019-0362-1

    [54]

    CHEN M, LAN X, TANG X, et al. High carrier mobility in HgTe quantum dot solids improves mid-IR photodetectors[J]. ACS Photonics, 2019, 6(9): 2358-2365. DOI: 10.1021/acsphotonics.9b01050

    [55]

    Chatterjee A, Jagtap A, Pendyala N, et al. HgCdTe quantum dot over interdigitated electrode for mid-wave infrared photon detection and its noise characterization[J]. International Journal of Nanoscience, 2020, 19(3): 1950020. DOI: 10.1142/S0219581X19500200

    [56]

    Ackerman M M, Tang X, Guyot-Sionnest P. Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors[J]. ACS Nano, 2018, 12(7): 7264-7271. DOI: 10.1021/acsnano.8b03425

    [57]

    Lhuillier E, Keuleyan S, Zolotavin P, et al. Mid-infrared HgTe/As2S3 field effect transistors and photodetectors[J]. Advanced Materials, 2013, 25(1): 137-141. DOI: 10.1002/adma.201203012

    [58]

    TANG X, Ackerman M M, Guyot-Sionnest P. Thermal imaging with plasmon resonance enhanced HgTe colloidal quantum dot photovoltaic devices[J]. ACS Nano, 2018, 12(7): 7362-7370. DOI: 10.1021/acsnano.8b03871

    [59]

    Ramiro I, Özdemir O, Christodoulou S, et al. Mid-and long-wave infrared optoelectronics via intraband transitions in PbS colloidal quantum dots[J]. Nano Letters, 2020, 20(2): 1003-1008. DOI: 10.1021/acs.nanolett.9b04130

    [60] 叶振华, 李杨, 胡伟达, 等. 同时模式的中波/长波碲镉汞双色红外探测器[J]. 红外与毫米波学报, 2012, 31(6): 497-500. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201206005.htm

    YE Z H, LI Y, HU W D, et al. Simultaneous mode MW/LW two color HgCdTe infrared detector[J]. J. Infrared Millim. Waves, 2012, 31(6): 497-500. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201206005.htm

    [61]

    HUANG J, GUO D, DENG Z, et al. Midwave infrared quantum dot quantum cascade photodetector monolithically grown on silicon substrate[J]. Journal of Lightwave Technology, 2018, 36(18): 4033-4038. DOI: 10.1109/JLT.2018.2859250

    [62]

    ZHU Y, ZHAI S, LIU J, et al. Mid-wave/long-wave dual-color infrared quantum cascade detector enhanced by antenna-coupled microcavity[J]. Optics Express, 2021, 29(23): 37327-37335. DOI: 10.1364/OE.438919

    [63]

    Guyot-Sionnest P, Roberts J A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots[J]. Applied Physics Letters, 2015, 107(25): 253104. DOI: 10.1063/1.4938135

    [64]

    De Souza C F, Alizadeh A, Nair S, et al. Mechanism of IR photoresponse in nanopatterned InAs/GaAs quantum dot pin photodiodes[J]. IEEE Journal of Quantum Electronics, 2010, 46(5): 832-836. DOI: 10.1109/JQE.2009.2035360

    [65]

    Motmaen A, Rostami A, Matloub S. Ultra high-efficiency integrated mid infrared to visible up-conversion system[J]. Scientific Reports, 2020, 10(1): 1-10. DOI: 10.1038/s41598-019-56847-4

    [66]

    ZHANG S, MU G, CAO J, et al. Single-/fused-band dual-mode mid-infrared imaging with colloidal quantum-dot triple-junctions[J]. Photonics Research, 2022, 10(8): 1987-1995. DOI: 10.1364/PRJ.458351

    [67] 谭伊玫, 张硕, 罗宇宁, 等. 640×512规模碲化汞量子点中波红外焦平面阵列(特邀)[J]. 红外与激光工程, 2023, 52(7): 20230377. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202307001.htm

    TAN Y M, ZHANG S, LUO Y N, et al. 640×512 HgTe colloidal quantum-dot mid-wave infrared focal plane array (invited)[J]. Infrared and Laser Engineering, 2023, 52(7): 20230377. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202307001.htm

图(8)  /  表(2)
计量
  • 文章访问数:  2260
  • HTML全文浏览量:  257
  • PDF下载量:  320
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-08
  • 修回日期:  2023-12-01
  • 刊出日期:  2023-12-19

目录

/

返回文章
返回