Epipolar Rectification Based on Singular Value Decomposition of Camera Translation Matrix
-
摘要: 极线校正是一种针对双目相机原始图像对的投影变换方法, 使校正后图像对应的极线位于同一水平线上,消除垂直视差,将立体匹配优化为一维搜索问题。针对现今极线校正的不足,本文提出一种基于双目相机平移矩阵的极线校正方法:首先利用奇异值分解(singular value decomposition, SVD)平移矩阵,求得校正后的新旋转矩阵;其次通过校正前后的图像关系确立一个新相机内参矩阵,完成极线校正。运用本文方法对SYNTIM数据库的不同场景多组双目图像进行验证,实验结果表明平均校正误差在0.6像素内,图像几乎不产生畸变,平均偏斜在2.4°左右,平均运行时间为0.2302 s,该方法具有应用价值,完全满足极线校正的需求,解决了双目相机在立体匹配过程中由于相机的机械偏差而产生的误差和繁琐的计算过程。Abstract: Epipolar rectification is a projection transformation method for the original image pair of a binocular camera such that the corresponding polar lines of the corrected image are on the same horizontal line, no vertical parallax occurs, and stereo-matching is optimized as a one-dimensional search problem. A polar correction method based on a binocular camera translation matrix is proposed to address the shortcomings of current polar correction methods. First, the new corrected rotation matrix is derived using the translation matrix of singular value decomposition. Second, a new camera internal reference matrix is established based on the image relationship before and after correction to complete the polar correction. The proposed method was used to verify multiple groups of binocular images in different scenes in the SYNTIM database. The experimental results show that the average correction error is within 0.6 pixels. The image produces minimal distortion, and the average deviation is approximately 2.4°. The average operation time is 0.2302 s. With its application value, this method fully satisfies polar correction requirements, solves the error, and improves the tedious calculation process caused by the mechanical deviation of the camera during the stereo matching of binocular cameras.
-
Keywords:
- binocular vision /
- epipolar rectification /
- machine vision /
- depth camera
-
-
图 4 画出极线的Rubik图像及极线斜率(a) 原始图像(斜率=1.23×10-2)(b) Bouguet方法(斜率=3.82×10-7)(c) Fusiello方法(斜率=2.71×10-7)(d) Hartley方法(斜率=3.95×10-5)(e) Mallon方法(斜率=3.19×10-7)(f) Wu方法(斜率=1.48×10-6)(g) 本文推荐方法(斜率=2.39×10-7)
Figure 4. Rubik image with polar line drawn and polar line slope (a) Original image(Slope=1.23×10-2); (b) Bouguet's method (Slope=3.82×10-7); (c) Fusiello's method(Slope=2.71×10-7); (d) Hartley's method(Slope=3.95×10-5); (e) Mallon's method(Slope=3.19×10-7); (f) Wu's method(Slope=1.48×10-6); (g) Proposed rectification method (Slope=2.39×10-7)
表 1 平均误差、畸变、偏斜、运行时间
Table 1 Average error, scale, variance, skewness and runtime
Methods Bouguet Fusiello Hartley Mallon Wu Proposed Error in pixels 0.6495 0.6268 0.8467 0.6361 0.7028 0.5940 Scale variance 1.2275 1.2261 1.1270 1.1243 1.1900 1.0062 Skewness/(°) 2.3369 2.4472 2.5156 3.2096 3.0419 2.3941 Runtime/s 0.2349 0.2294 0.8473 1.305 0.2412 0.2302 -
[1] 王学, 周红旭, 张雷, 等. 基于近红外双目立体视觉的悬臂式掘进机定位研究[J/OL]. 工矿自动化: 1-11[2022-09-15]. DOI: 10.13272/j.issn.1671-251x.17896. WANG X, ZHOU H X, ZHANG L, et al. Research on cantilever roadheader positioning based on near-infrared binocular stereo vision[J/OL]. [2022-09-15]. Mine Automation, DOI: 10.13272/j.issn.1671-251x.17896.
[2] 江荣, 朱攀, 周兴林, 等. 基于双目视觉算法的路面三维纹理信息获取[J]. 激光与光电子学进展, 2022, 59(14): 284-292. JIANG R, ZHU P, ZHOU X L, et al. Three-dimensional pavement texture information acquisition based on binocular vision algorithm[J]. Laser & Optoelectronics Progress, 2022, 59(14): 284-292.
[3] 舒方林, 张海波, 曹文冠. 基于立体视觉的交叉路口对向车辆运动状态估计[J]. 计算机与数字工程, 2022, 50(5): 1029-1034. SHU F L, ZHANG H B, CAO W G. Estimating the motion state of oncoming vehicle based on stereo vision at intersection[J]. Computer & Digital Engineering, 2022, 50(5): 1029-1034.
[4] 冉舒文, 刘显明, 雷小华, 等. 基于双目视觉的抬头显示虚像三维形貌测量[J/OL]. [2022-10-26]. 光学学报, http://kns.cnki.net/kcms/detail/31.1252.O4.20220714.1900.522.html. RAN S W, LIU X M, LEI X H, et al. Head-up display virtural image 3D topography measurement based on binocular vision[J/OL]. [2022-10-26]. Acta Optica Sinica, http://kns.cnki.net/kcms/detail/31.1252.O4.20220714.1900.522.html
[5] Bouguet J Y. Matlab Camera Calibration Toolbox[EB/OL]. 2000, http://www.vision.caltech.edu\bouguetj\calib_doc.
[6] Andrea Fusiello, Luca Irsara. Quasi-Euclidean epipolar rectification of uncalibrated images[J]. Machine Vision and Applications, 2011, 22(4): 663-670. DOI: 10.1007/s00138-010-0270-3
[7] Richard I Hartley. In defense of the eight-point algorithm[J]. IEEE Trans. Pattern Anal. Mach. Intell., 1997, 19(6): 580-593. DOI: 10.1109/34.601246
[8] Hartley R, Zisserman A. Multiple View Geometry in Computer Vision[M]. Cambridge: Cambridge University Press, 2000.
[9] Richard I Hartley. Theory and practice of projective rectification[J]. International Journal of Computer Vision, 1999, 35(2): 115-127. DOI: 10.1023/A:1008115206617
[10] 林国余, 张为公. 一种无需基础矩阵的鲁棒性极线校正算法[J]. 中国图象图形学报, 2006(2): 203-209. LIN G Y, ZHANG W G. An Effective robust rectification method for stereo vision[J]. Journal of Image and Graphics, 2006(2): 203-209.
[11] John Mallon, Paul F Whelan. Projective rectification from the fundamental matrix[J]. Image and Vision Computing, 2005, 23(7): 643-650. DOI: 10.1016/j.imavis.2005.03.002
[12] WU Wenhuan, ZHU Hong, ZHANG Qian. Epipolar rectification by singular value decomposition of essential matrix[J]. Multimedia Tools Appl., 2018, 77(12): 15747-15771. DOI: 10.1007/s11042-017-5149-0
[13] Martin A Fischler, Robert C Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Commun. ACM, 1981, 24(6): 381-395. DOI: 10.1145/358669.358692
[14] Hyunsuk Ko, Han Suk Shim, Ouk Choi, et al. Robust uncalibrated stereo Rectification with constrained geometric distortions (USR-CGD)[J]. Image and Vision Computing, 2017, 60: 98-114. DOI: 10.1016/j.imavis.2017.01.001
-
期刊类型引用(5)
1. 赵晟,赵亚南,刘建旭,朴宇鹏,吴玮. 凝视型红外探测系统的三维噪声研究. 激光与红外. 2024(08): 1241-1249 . 百度学术
2. 冯涛,金伟其,司俊杰,张海军. 非制冷IRFPA像元结构与时空随机噪声的优化理论(英文). 红外与毫米波学报. 2020(02): 142-148 . 百度学术
3. 何琦,赵航斌,彭俊,孙德新. 多次采样平均在长波红外高光谱成像系统中的应用. 红外技术. 2019(05): 457-461 . 本站查看
4. 岳付昌. 基于最大中值滤波和K-means聚类红外弱小目标检测. 光电技术应用. 2018(05): 41-43 . 百度学术
5. 徐振亚,祁鸣,李丽娟. 基于实测数据的凝视红外系统重构方法. 红外技术. 2017(05): 404-408 . 本站查看
其他类型引用(8)