基于TC4/Ni杜瓦冷指焊缝微观组织及接头结构的研究

沈练, 李冉, 魏超群, 赵维艳, 朱鹏飞, 徐世春, 戚雁武

沈练, 李冉, 魏超群, 赵维艳, 朱鹏飞, 徐世春, 戚雁武. 基于TC4/Ni杜瓦冷指焊缝微观组织及接头结构的研究[J]. 红外技术, 2024, 46(2): 208-215.
引用本文: 沈练, 李冉, 魏超群, 赵维艳, 朱鹏飞, 徐世春, 戚雁武. 基于TC4/Ni杜瓦冷指焊缝微观组织及接头结构的研究[J]. 红外技术, 2024, 46(2): 208-215.
SHEN Lian, LI Ran, WEI Chaoqun, ZHAO Weiyan, ZHU Pengfei, XU Shichun, QI Yanwu. Welding Microstructure and Joint Structure Design of the TC4/Ni Dewar Cold Finger[J]. Infrared Technology , 2024, 46(2): 208-215.
Citation: SHEN Lian, LI Ran, WEI Chaoqun, ZHAO Weiyan, ZHU Pengfei, XU Shichun, QI Yanwu. Welding Microstructure and Joint Structure Design of the TC4/Ni Dewar Cold Finger[J]. Infrared Technology , 2024, 46(2): 208-215.

基于TC4/Ni杜瓦冷指焊缝微观组织及接头结构的研究

详细信息
    作者简介:

    沈练(1988-),男,硕士,高级工程师,主要从事半导体红外光电子器件封装。E-mail:shenlian4432@163.com

  • 中图分类号: TG456.7

Welding Microstructure and Joint Structure Design of the TC4/Ni Dewar Cold Finger

  • 摘要: 针对微型节流制冷型红外焦平面探测器杜瓦冷指,选取TC4/Ni的钎焊形式,从钎焊方法和钎料类型的焊缝微观组织以及接头结构设计的可靠性等方面对TC4/Ni的钎焊工艺进行了研究。结果表明,结合应力、形变和降温时间仿真以及防锈蚀分析结果,研究TC4/Ni冷指端面结构钎焊工艺具有一定工程实用意义;并通过正交试验确定了高温真空钎焊+AgCu28钎料组合的较佳工艺方案,满足对控制元素偏析和减少焊接脆性相生成的目的;同时综合考虑钎透率、充耐压试验及剪切强度测试的结果,确定锥形焊缝为较佳焊接结构。
    Abstract: The brazing process of TC4/Ni for a Dewar cold finger with a miniature Joule–Thomson-cooled infrared focal plane detector was selected, and the brazing process of TC4/Ni was investigated based on the microstructure of the brazing method and solder type and the reliability of the joint structure. The results show that research on the brazing process of the TC4 /Ni cold finger end-face structure has practical significance in engineering by combining the simulation results of stress, deformation, and cooling time with the analysis results of rust prevention and corrosion. Through an orthogonal test, an improved process scheme of the high-temperature vacuum brazing + AgCu28 brazing filler metal combination was determined, which could control element segregation and reduce the formation of the welding brittle phase. Based on the penetration rate, stamping, high-voltage holding, and shear strength tests, the conical weld was the best welding structure.
  • 图  1   杜瓦冷指焊接示意图

    Figure  1.   Schematic diagram of dewar cold finger welding

    图  2   杜瓦冷头过渡结构

    Figure  2.   Dewar cold head transition structure

    图  3   杜瓦冷头封装结构模型网格划分

    Figure  3.   Mesh generation of dewar cold head packaging structure model

    图  4   两种结构在80 K工作温度下芯片应力和应变情况

    Figure  4.   Stress and strain of the two structures at 80 K

    图  5   两种冷指端面结构芯片降温时间曲线对比情况

    Figure  5.   Comparison of cooling time curves of two cold finger end structure chips

    图  6   四种焊接结构示意图

    Figure  6.   Schematic diagram of four welding structures

    图  7   AgCu28钎料高温真空钎焊扫描电镜照片

    Figure  7.   SEM photo of high temperature vacuum brazing with AgCu28 Solder

    图  8   AgCuNi钎料高温真空钎焊扫描电镜照片

    Figure  8.   SEM photo of high temperature vacuum brazing with AgCuNi solder

    图  9   AgCu28钎料高频真空钎焊扫描电镜照片

    Figure  9.   SEM photo for high frequency vacuum brazing of AgCu28 solder

    图  10   区域Ⅰ的扫描电镜照片

    Figure  10.   SEM photo of region I

    图  11   区域Ⅱ的扫描电镜照片

    Figure  11.   SEM photo of region Ⅱ

    图  12   充耐压检测试意图

    Figure  12.   Test intent of charge and withstand pressure test

    图  13   剪切强度测试示意图

    Figure  13.   Shear strength test

    图  14   冷指端面芯和环脱落(螺纹结构)

    Figure  14.   The cold finger core falls off from the end face of the cold finger(Thread structure)

    图  15   单侧分离(直边结构)

    Figure  15.   Unilateral separation(Straight edge structure)

    图  16   结构优化前后对比

    Figure  16.   Comparison diagram before and after structural optimization

    表  1   4J36合金与纯Ni材料参数的对比

    Table  1   Material parameters comparison of between 4J36 alloy and pure Ni

    Cold finger materials Coefficient of thermal expansion
    /(10-6/K)
    Thermal conductivity
    /(W/m·K)
    4J36 1.8 17.3
    Ni 9.8 90.7
    下载: 导出CSV

    表  2   两种冷指端面结构的芯片应力、应变及降温时间结果对比汇总

    Table  2   Comparison and summary of chip stress, strain and cooling time results of two cold finger end structures

    Brazing structure TC4+4J36 TC4+Ni
    Chip stress max/MPa 29.33 34.72
    Chip strain max/μm 2.75 2.93
    Cooling time/s 20 9
    下载: 导出CSV

    表  3   TC4的化学成分

    Table  3   TC4 alloy chemical composition (wt/%)

    Elements Content
    Al 5.5−6.8
    V 3.5−4.5
    Fe ≤0.3
    O ≤0.2
    C ≤0.1
    N ≤0.05
    H ≤0.015
    下载: 导出CSV

    表  4   纯Ni的化学成分

    Table  4   Ni Chemical composition (wt/%)

    Elements Ni Cu Fe Mg Si Mn
    Content ≥99.5 ≤0.1 ≤0.1 ≤0.1 ≤0.1 ≤0.05
    下载: 导出CSV

    表  5   钎料的化学成分、熔点及规格

    Table  5   Chemical composition, melting point and specification of filler metal

    Brazing materials Main components/% Melting temperature
    /℃
    Ag Cu Ni
    AgCu28 72±1.0 28±1.0 - 779
    AgCuNi 70±1.5 28±1.0 2±0.5 779-815
    下载: 导出CSV

    表  6   钎焊温度及保温时间

    Table  6   Brazing temperature and holding time

    Brazing method Brazing materials
    AgCu28
    Binary alloy
    AgCuNi
    Ternary alloy
    High-temperature vacuum brazing 830℃, 5 min 850℃, 5 min
    High-frequency vacuum brazing 20 A, 60 s 23 A, 60 s
    下载: 导出CSV

    表  7   主要成分分析结果

    Table  7   Main composition analysis results

    Region Main components Content
    /%
    Notes
    A Ag 70−73 Light white
    phase
    Cu 25−28
    B, C Ni 5−10 Dark gray phase
    Cu 85−90
    D Ti 75−85 Light gray phase
    Cu 12−23
    下载: 导出CSV

    表  8   试验结果统计

    Table  8   Test result statistics

    Test projects Straight Step Thread Conical
    Welding results Normal Normal Falling off Normal
    Brazing permeability 100% 80% - 95%
    Pressurize 2 MPa, (10 minutes 3 times) × Normal - Normal
    Pressurize 3 MPa, (10 minutes 3 times) - Normal - Normal
    Pressurize 4 MPa, (10 minutes 3 times) - Normal - Normal
    Withstand voltage 2 MPa, (once 5 minutes) - Normal - Normal
    Judgement × × Better
    下载: 导出CSV

    表  9   剪切强度测试对比结果

    Table  9   Comparison results of shear strength test

    Welding structures Shear strength test/MPa Average value
    /MPa
    Straight 15.96 15.12
    14.36
    15.05
    Step > 23.42 > 23.42
    > 23.42
    > 23.42
    Thread 1.67 1.44
    1.26
    1.39
    Conical > 23.42 > 23.42
    > 23.42
    > 23.42
    下载: 导出CSV
  • [1] 李家鹏, 曹菁, 陈双涛, 等. 节流制冷器自调机构低温形变特性分析[J]. 低温与超导, 2016(4): 26-30.

    LI J P, CAO J, CHEN S T, et al. Performance analysis of the cryogenic characteristics of self-regulating part of small J-T cryocooler[J]. Cryogenics & Superconductivity, 2016(4): 26-30.

    [2] 陈芳, 高超, 罗世魁. 大面阵红外焦平面杜瓦冷指支撑结构设计[J]. 红外与激光工程, 2020, 49(8): 190-196.

    CHEN F, GAO C, LUO S K. Cold head supporting structure of dewar used in large infrared focal plane[J]. Infrared and Laser Engineering, 2020, 49(8): 190-196.

    [3] 孙闻. 制冷型红外探测器组件低温热特性研究[D]. 北京: 中国科学院大学, 2017.

    SUN W. Research on Low Temperature Thermal Characteristics of Cryogenic Infrared Detector Assembly[D]. Beijing: University of Chinese Academy of Sciences, 2017.

    [4] 方永建. 4J29/4J36铁基合金与TC4钛合金异种金属焊接组织及性能研究[D]. 成都: 西南交通大学, 2020.

    FANG Y J. Research on Microstructures and Properties of Dissimilar Welded Joints between 4J29/4J36 Iron-based Alloy and TC4 Titanium Alloy[D]. Chengdu: Southwest Jiaotong University, 2020.

    [5] 张启运, 庄鸿寿. 钎焊手册[M]. 北京: 机械工业出版社, 2008.

    ZHANG Q Y, ZHUANG H S. Brazing and Soldering Manual[M]. Beijing: China Machine Press, 2008.

    [6] 王晓阳, 曹建, 代翔宇, 等. Ag-Cu钎料钎焊ZTA陶瓷与TC4钛合金[J]. 焊接学报, 2019, 40(3): 47-51.

    WANG X Y, CAO J, DAI X Y, et al. Ag-Cu brazing of ZTA ceramics and TC4 titanium alloy[J]. Transactions of the China Welding Institution, 2019, 40(3): 47-51.

    [7] 李玉龙, 杨瑾, 禹业晓. 钛及钛合金钎焊特点及现状[J]. 热加工工艺, 2011, 40(9): 130-133.

    LI Y L, YANG J, YU Y X. Characteristic and current status of titanium and its alloys[J]. Hot Working Technology, 2011, 40(9): 130-30.

    [8] 李芬, 刘泳良, 田宏, 等. 钎焊工艺对AgCu28钎焊焊缝偏析的影响[J]. 真空电子技术, 2018(6): 56-60.

    LI F, LIU Y L, TIAN H, et al. Influence of brazing process on segregation of AgCu28 brazed welding[J]. Vacuum Electronics, 2018(6): 56-60.

    [9] 张汇文. TC4钛合金与1Cr18Ni9Ti不锈钢钎焊工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2006.

    ZHANG H W. Procedure Study on Brazing of TC4 Titanium Alloy to 1Cr18Ni9Ti Stainless Steel[D]. Harbin: Harbin Institute of Technology, 2006.

图(16)  /  表(9)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  33
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-08
  • 修回日期:  2022-09-17
  • 刊出日期:  2024-02-19

目录

    /

    返回文章
    返回
    x 关闭 永久关闭

    尊敬的专家、作者、读者:

    端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

    感谢您对本刊的支持!

    《红外技术》编辑部

    2024年6月6日