Welding Microstructure and Joint Structure Design of the TC4/Ni Dewar Cold Finger
-
摘要: 针对微型节流制冷型红外焦平面探测器杜瓦冷指,选取TC4/Ni的钎焊形式,从钎焊方法和钎料类型的焊缝微观组织以及接头结构设计的可靠性等方面对TC4/Ni的钎焊工艺进行了研究。结果表明,结合应力、形变和降温时间仿真以及防锈蚀分析结果,研究TC4/Ni冷指端面结构钎焊工艺具有一定工程实用意义;并通过正交试验确定了高温真空钎焊+AgCu28钎料组合的较佳工艺方案,满足对控制元素偏析和减少焊接脆性相生成的目的;同时综合考虑钎透率、充耐压试验及剪切强度测试的结果,确定锥形焊缝为较佳焊接结构。Abstract: The brazing process of TC4/Ni for a Dewar cold finger with a miniature Joule–Thomson-cooled infrared focal plane detector was selected, and the brazing process of TC4/Ni was investigated based on the microstructure of the brazing method and solder type and the reliability of the joint structure. The results show that research on the brazing process of the TC4 /Ni cold finger end-face structure has practical significance in engineering by combining the simulation results of stress, deformation, and cooling time with the analysis results of rust prevention and corrosion. Through an orthogonal test, an improved process scheme of the high-temperature vacuum brazing + AgCu28 brazing filler metal combination was determined, which could control element segregation and reduce the formation of the welding brittle phase. Based on the penetration rate, stamping, high-voltage holding, and shear strength tests, the conical weld was the best welding structure.
-
Keywords:
- dewar cold finger /
- vacuum brazing /
- TC4 titanium alloy
-
-
表 1 4J36合金与纯Ni材料参数的对比
Table 1 Material parameters comparison of between 4J36 alloy and pure Ni
Cold finger materials Coefficient of thermal expansion
/(10-6/K)Thermal conductivity
/(W/m·K)4J36 1.8 17.3 Ni 9.8 90.7 表 2 两种冷指端面结构的芯片应力、应变及降温时间结果对比汇总
Table 2 Comparison and summary of chip stress, strain and cooling time results of two cold finger end structures
Brazing structure TC4+4J36 TC4+Ni Chip stress max/MPa 29.33 34.72 Chip strain max/μm 2.75 2.93 Cooling time/s 20 9 表 3 TC4的化学成分
Table 3 TC4 alloy chemical composition
(wt/%) Elements Content Al 5.5−6.8 V 3.5−4.5 Fe ≤0.3 O ≤0.2 C ≤0.1 N ≤0.05 H ≤0.015 表 4 纯Ni的化学成分
Table 4 Ni Chemical composition
(wt/%) Elements Ni Cu Fe Mg Si Mn Content ≥99.5 ≤0.1 ≤0.1 ≤0.1 ≤0.1 ≤0.05 表 5 钎料的化学成分、熔点及规格
Table 5 Chemical composition, melting point and specification of filler metal
Brazing materials Main components/% Melting temperature
/℃Ag Cu Ni AgCu28 72±1.0 28±1.0 - 779 AgCuNi 70±1.5 28±1.0 2±0.5 779-815 表 6 钎焊温度及保温时间
Table 6 Brazing temperature and holding time
Brazing method Brazing materials AgCu28
Binary alloyAgCuNi
Ternary alloyHigh-temperature vacuum brazing 830℃, 5 min 850℃, 5 min High-frequency vacuum brazing 20 A, 60 s 23 A, 60 s 表 7 主要成分分析结果
Table 7 Main composition analysis results
Region Main components Content
/%Notes A Ag 70−73 Light white
phaseCu 25−28 B, C Ni 5−10 Dark gray phase Cu 85−90 D Ti 75−85 Light gray phase Cu 12−23 表 8 试验结果统计
Table 8 Test result statistics
Test projects Straight Step Thread Conical Welding results Normal Normal Falling off Normal Brazing permeability 100% 80% - 95% Pressurize 2 MPa, (10 minutes 3 times) × Normal - Normal Pressurize 3 MPa, (10 minutes 3 times) - Normal - Normal Pressurize 4 MPa, (10 minutes 3 times) - Normal - Normal Withstand voltage 2 MPa, (once 5 minutes) - Normal - Normal Judgement × √ × Better 表 9 剪切强度测试对比结果
Table 9 Comparison results of shear strength test
Welding structures Shear strength test/MPa Average value
/MPaStraight 15.96 15.12 14.36 15.05 Step > 23.42 > 23.42 > 23.42 > 23.42 Thread 1.67 1.44 1.26 1.39 Conical > 23.42 > 23.42 > 23.42 > 23.42 -
[1] 李家鹏, 曹菁, 陈双涛, 等. 节流制冷器自调机构低温形变特性分析[J]. 低温与超导, 2016(4): 26-30. LI J P, CAO J, CHEN S T, et al. Performance analysis of the cryogenic characteristics of self-regulating part of small J-T cryocooler[J]. Cryogenics & Superconductivity, 2016(4): 26-30.
[2] 陈芳, 高超, 罗世魁. 大面阵红外焦平面杜瓦冷指支撑结构设计[J]. 红外与激光工程, 2020, 49(8): 190-196. CHEN F, GAO C, LUO S K. Cold head supporting structure of dewar used in large infrared focal plane[J]. Infrared and Laser Engineering, 2020, 49(8): 190-196.
[3] 孙闻. 制冷型红外探测器组件低温热特性研究[D]. 北京: 中国科学院大学, 2017. SUN W. Research on Low Temperature Thermal Characteristics of Cryogenic Infrared Detector Assembly[D]. Beijing: University of Chinese Academy of Sciences, 2017.
[4] 方永建. 4J29/4J36铁基合金与TC4钛合金异种金属焊接组织及性能研究[D]. 成都: 西南交通大学, 2020. FANG Y J. Research on Microstructures and Properties of Dissimilar Welded Joints between 4J29/4J36 Iron-based Alloy and TC4 Titanium Alloy[D]. Chengdu: Southwest Jiaotong University, 2020.
[5] 张启运, 庄鸿寿. 钎焊手册[M]. 北京: 机械工业出版社, 2008. ZHANG Q Y, ZHUANG H S. Brazing and Soldering Manual[M]. Beijing: China Machine Press, 2008.
[6] 王晓阳, 曹建, 代翔宇, 等. Ag-Cu钎料钎焊ZTA陶瓷与TC4钛合金[J]. 焊接学报, 2019, 40(3): 47-51. WANG X Y, CAO J, DAI X Y, et al. Ag-Cu brazing of ZTA ceramics and TC4 titanium alloy[J]. Transactions of the China Welding Institution, 2019, 40(3): 47-51.
[7] 李玉龙, 杨瑾, 禹业晓. 钛及钛合金钎焊特点及现状[J]. 热加工工艺, 2011, 40(9): 130-133. LI Y L, YANG J, YU Y X. Characteristic and current status of titanium and its alloys[J]. Hot Working Technology, 2011, 40(9): 130-30.
[8] 李芬, 刘泳良, 田宏, 等. 钎焊工艺对AgCu28钎焊焊缝偏析的影响[J]. 真空电子技术, 2018(6): 56-60. LI F, LIU Y L, TIAN H, et al. Influence of brazing process on segregation of AgCu28 brazed welding[J]. Vacuum Electronics, 2018(6): 56-60.
[9] 张汇文. TC4钛合金与1Cr18Ni9Ti不锈钢钎焊工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2006. ZHANG H W. Procedure Study on Brazing of TC4 Titanium Alloy to 1Cr18Ni9Ti Stainless Steel[D]. Harbin: Harbin Institute of Technology, 2006.