滚摆导引头视线角速率提取技术

王帅为, 梁益铭, 郑建强, 杨姝君, 马季容

王帅为, 梁益铭, 郑建强, 杨姝君, 马季容. 滚摆导引头视线角速率提取技术[J]. 红外技术, 2021, 43(6): 592-596.
引用本文: 王帅为, 梁益铭, 郑建强, 杨姝君, 马季容. 滚摆导引头视线角速率提取技术[J]. 红外技术, 2021, 43(6): 592-596.
WANG Shuaiwei, LIANG Yiming, ZHENG Jianqiang, YANG Shujun, MA Jirong. Method of LOS Rate Extraction for Roll-Pitch Infrared Seekers[J]. Infrared Technology , 2021, 43(6): 592-596.
Citation: WANG Shuaiwei, LIANG Yiming, ZHENG Jianqiang, YANG Shujun, MA Jirong. Method of LOS Rate Extraction for Roll-Pitch Infrared Seekers[J]. Infrared Technology , 2021, 43(6): 592-596.

滚摆导引头视线角速率提取技术

详细信息
    作者简介:

    王帅为(1992-),男,陕西渭南人,助理工程师,硕士,研究方向:导航制导与控制。E-mail:2504715546@qq.com

  • 中图分类号: TJ765.1

Method of LOS Rate Extraction for Roll-Pitch Infrared Seekers

  • 摘要: 滚转摆动式导引头采用滚转摆动两轴极坐标控制形式,外框为滚动框,内框为摆动框,视场可覆盖整个前半球,具有结构简单、重量轻、体积小、成本低等特点,因此非常适用于近程红外防空导弹。本文讨论了滚摆式导引头与偏仰式导引头视线角速率存在的差异,阐述了滚摆式导引头视线角速度存在x轴分量的原因。并给出了半捷联式滚摆导引头角速率的获取方式,推导了其简化形式,分析了简化公式使用的条件。仿真结果表明,该简化公式具有较好的近似精度,具有一定的工程应用前景。
    Abstract: Roll-pitch seekers adopt the polar coordinate control form of rolling and pitching two axes. The outer frame is the rolling frame, the inner frame is the pitching frame, and the field of view can cover the entire front hemisphere. They have a simple structure, light weight, small volume, and low cost; therefore, they are very suitable for short-range infrared air defense missiles. This paper discusses the difference between the line-of-sight rates of roll–pitch seekers and pitch–yaw seekers and expounds the reason why roll–pitch seekers rotate around the x axis. The method of obtaining the line-of-sight rate of the roll–pitch seeker is given, the simplified form is deduced, and the conditions for using the simplified formula are analyzed. The simulation results show that the simplified formula has good approximation accuracy and certain engineering application prospects.
  • 星敏感器是当前广泛应用的天体敏感器[1-2],其工作环境必然会受到安装面温度变化等影响,光机结构的热变形会导致镜片面型变化,从而影响光学系统成像质量下降[3-4],会对弥散斑产生较大的影响,为了保证系统的成像质量,需要对结构完成光机热集成分析,分析环境温度对镜头的影响[5]

    随着航天事业的发展,星敏感器已经广泛应用于多种场合[6],由于我国星敏感器研究起步较晚,国内对长焦距大口径星敏感器的研究相对较少,孟祥月[7]等研制了焦距50 mm,入瞳直径40 mm的星敏感器。孙东起[8]等人研制了一种焦距200 mm,入瞳直径125 mm的双高斯光学系统的长焦距星敏感器。伍雁雄[9]等研制了焦距200 mm,入瞳直径100 mm的高精度星敏感器。

    本文设计了一种大口径热不敏星敏感器,光学系统焦距900 mm,入瞳直径200 mm,光谱范围450~750 nm,通过光机热集成分析方法对系统进行热分析,通过将Nastran计算的主次镜表面节点刚体位移代入Sigfit光机热耦合软件进行Zernike多项式拟合,再将主次镜表面Zernike系数导入Zemax光学设计软件中,分析了由于温度变化导致的光机结构刚体位移等变化。

    光学系统参数:焦距范围为900 mm,入瞳直径D≥200 mm,光谱范围为470~900 nm,在热不敏光学系统安装面温度为20℃±5℃时,其光轴偏角优于1″,0.8视场下80%能量集中在9.2~18.4 μm之间。光学系统结构如图 1所示,0.8视场下各波段圈入能量曲线如图 2所示,可以看出满足80%能量集中时,弥散斑直径满足指标要求。

    图  1  光学系统结构图
    Figure  1.  Optical system structure diagram
    图  2  0.8视场各波段弥散斑包围能量曲线
    Figure  2.  Surrounding energy curves of scattered spots in various bands of 0.8 field of view

    本系统采用改进型卡式系统,为保证主镜和后接透镜组的同轴度,选用中心固定形式,主镜材料选用微晶玻璃,为达到热不敏效果,减少温度变化对结构的影响,主镜轴材料应选用与主镜材料热膨胀系数相近的殷钢,主镜通过胶层与主镜轴固定连接,主镜轴作为整个系统的连接构件,具有一定的刚性,而胶层的柔性能够很好的减少重力、温度等对主镜产生的变形影响,主镜结构如图 3所示。

    图  3  主镜结构
    Figure  3.  Main mirror structure

    次镜是非常敏感的光学构件,微小的变化都会带来很大影响,并且支架的大小直接影响光学系统的中心遮挡大小,为保证结构稳定、中心遮挡小以及减小加工难度等原因采用三片殷钢片连接主次镜,能够有效减少温度等因素引起的主次镜间距的变化,支撑结构如图 4所示。

    图  4  主次镜支撑结构
    Figure  4.  Main and secondary mirror support structure

    透镜组通过压圈固定方式保证镜片间间距,镜筒材料采用A704能够减轻结构质量,并且在后端机械结构上留有两个接口方便后续探测器接入,系统整体结构如图 5所示。

    图  5  整体结构模型图
    Figure  5.  Overall structural model diagram

    在本系统中,主次镜结构的稳定性对成像质量的影响最大,本次分析只对主次镜结构进行仿真,分析目的是验证主次镜结构在20±5℃范围内是否满足光学系统设计指标要求。

    通过MSC.Patran建立模型如图 6所示,整个模型采用手工划分网格的方法,控制网格疏密,使得计算结果更加精确,模型主要六面体单元及少量的五面体建模,共有单元数12172个,节点数18707个,结构有限元建模计算中主次镜及支撑结构的材料及其属性参数如表 1所示。

    图  6  有限元模型图
    Figure  6.  Finite element model diagram
    表  1  选用材料属性参数
    Table  1.  Selected material property parameters
    Material Elasticity modulus Ea/MPa Poisson ratio μ Density ρ/(103 kg/m3) CTE α/
    (10-6mm/℃)
    Invar 141000 0.25 8.1 0.2
    TC4 114000 0.29 4.4 8.9
    Microcrystalline glass 90600 0.24 2.53 0.5
    D04 RTV 850 0.40 1.15 236
    下载: 导出CSV 
    | 显示表格

    按照指标要求的环境温度25℃,对主次镜模型施加温度载荷,利用Nastran软件计算得到刚体位移结果,主次镜刚体位移云图如图 7所示,可以看出主镜最大轴向位移为0.228 μm,次镜最大轴向位移为0.986 μm,目前来看热变形结果还在可控范围内。

    图  7  整体位移分布
    Figure  7.  Overall displacement distribution

    利用光机热耦合工具Sigfit输入系统主次镜的曲率半径、主次镜表面节点位置数据、热变形后主次镜表面节点变化数据等进行拟合。温度为25℃时,Sigfit拟合得到的Zernike多项式系数[10]表 2所示。

    表  2  Zernike系数
    Table  2.  Zernike coefficient
    Serial number Expression Value (The main mirror) Value(The secondary mirror)
    1 1 1.53E-05 7.30E-06
    2 ρcosθ 6.47E-10 1.15E-08
    3 ρsinθ 4.36E-10 1.09E-11
    4 2ρ2-1 -1.07E-04 1.26E-05
    5 ρ2cos2θ -8.13E-08 -1.41E-10
    6 ρ2sin2θ 4.33E-08 2.76E-10
    7 (3ρ2-2ρ)cos2θ 3.62E-09 1.74E-11
    8 (3ρ2-2ρ)sin2θ 5.39E-09 -1.85E-08
    9 6ρ4-6ρ2+1 3.63E-06 -3.7E-08
    下载: 导出CSV 
    | 显示表格

    将主次镜的Zernike多项式系数导入Zemax光学设计软件中,即可得到系统弥散斑直径以及光轴的变化,图 8给出了在环境温度25℃,0.8°视场下各波段的圈入能量曲线图,由图中信息可知,各波段80%能量弥散斑直径集中在9.2~18.4 μm之间,与图 2对比可知在温度的影响下,各波段的弥散斑直径也会增大。同时由图 9得到波前RMS(Root-Mean-Square)值为0.035λ<1/12λ,成像质量良好,调用评价函数RAID指令,在0°视场入射光线与像面法线夹角可以近似为光轴偏角约为0.033″优先于1″。

    图  8  0.8视场圈入能量曲线
    Figure  8.  0.8 field of view encirclement energy curves
    图  9  波前图
    Figure  9.  Wavefront diagram

    为检验光机热集成分析的准确性以及光机设计的合理性,设置实验室20±5℃的温度条件下,进行光学系统主镜、次镜以及透镜组系统装调,主镜及透镜组利用三坐标进行检测装调,保证其位置精度,然后利用干涉仪进行次镜的装调工作,系统整体装调结构如图 10所示。

    图  10  系统整体装调结构图
    Figure  10.  Overall system assembly and adjustment structure diagram

    在实验室室温25℃下,系统装调后的轴上视场波像差如图 11所示,RMS值为0.08λ,所测得RMS值与有限元分析结果相差很小,分析实例验证了本系统分析方法的有效性。

    图  11  0视场波像差
    Figure  11.  Zero field of view wave aberration

    本次测试温度环境分别设为15℃、20℃、25℃,采用平行光管照射,镜头放置在精密旋转的调整台上,通过对镜头的成像光斑与能量分布进行分析获得弥散斑,检测图如图 12所示,记录3组数据取平均值最终结果如图 13所示,由此可见各波段均符合在0.8视场下集中80%能量时,弥散斑直径在9.2~18.4 μm区间的指标要求。

    图  12  弥散斑测试现场图
    Figure  12.  Field diagram of diffuse spot testing
    图  13  弥散斑直径图
    Figure  13.  Diffuse spot diameter map

    在20±5℃温度范围内,通过对0°视场像点观测,由公式(1)可知:

    $$ \frac{a}{f} \times \frac{{180^\circ }}{{\text{π }}} \times 3600 < 1'' $$ (1)

    式中:像元大小a为4.6 μm,焦距f为900 mm,经过计算只要像点偏移小于一个像元即可认为光轴偏角优于1″。经过观察,像点最大位移小于一个像元,故可以判断光轴偏角优于1″,满足指标要求。通过对弥散斑直径以及光轴漂移量的检测结果与仿真分析结果对比发现光机热集成分析具有可靠性,所以有必要对系统进行光机热集成分析以快速检验设计的系统是否满足指标。

    本文通过对热不敏光学系统进行结构设计,并对结构进行有限元分析,结合光机热集成分析方法,通过sigfit计算出在20±5℃下主次镜RMS值为0.13λ,将拟合得到的Zernike系数代入光学设计软件Zemax中进行仿真模拟,设计结果表明光轴偏角为0.023″优于1″,波前RMS值为0.035λ,圈入能量80%集中度弥散斑直径在9.2~18.4 μm之间,最终进行装调检测,结果显示系统轴上视场波像差RMS值为0.08λ,实现弥散斑能量80%集中度的直径在9.2~18.4 μm内,像点最大位移小于一个像元,光轴偏角优先于1″,满足项目设计指标要求。该分析方法能够准确地验证系统是否满足指标要求,极大地缩短了研制周期,能够对系统性能进行有效的评估,同时可以将该方法运用到其他光学系统光机热集成分析中。

  • 图  1   滚摆导引头

    Figure  1.   Roll-pitch seeker

    图  2   偏仰导引头

    Figure  2.   Pitch-yaw seeker

    图  3   坐标系转化关系

    Figure  3.   Coordinate transformation

    图  4   误差角与框架角、视线角和姿态角的关系

    Figure  4.   Relationship of frame angle, line of sight, yaw angle and error angle

    图  5   误差角、俯仰角、框架角与时间的关系

    Figure  5.   Relationship between error angle/angle of pitch/pitch frame angle/yaw frame angle and time

    图  6   时间-视线角速率

    Figure  6.   Time-line of sight angular rate

  • [1] 祁载康. 制导弹药技术[M]. 北京: 北京理工大学出社, 2002.

    QI Zaikang. Guided Munition Technology[M]. Beijing: Beijing Institute of Technology Press, 2002.

    [2]

    Glasgow B, Bell W. The future of anti-aircraft imaging infrared seeker missile threats[C]//1999 IEEE Aerospace Conference, 1999, 4: 457-465.

    [3] 肖任鑫, 张聘义. 滚俯仰式红外导引头稳定平台控制与仿真[J]. 红外与激光工程, 2007, 36: 363-365. DOI: 10.3969/j.issn.1007-2276.2007.z2.092

    XIAO Renxin, ZHANG Pinyi. Control and simulation of stabilization platform for roll-pitch infrared seeker[J]. Infrared and Laser Engineering, 2007, 36: 363-365. DOI: 10.3969/j.issn.1007-2276.2007.z2.092

    [4] 王志伟, 祁载康, 王江. 滚-仰式导引头跟踪原理[J]. 红外与激光工程, 2008, 37(2): 274-277. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200802020.htm

    WANG Zhiwei, QI Zaikang, WANG Jiang. Tracking principle for roll-pitch seeker[J]. Infrared and Laser Engineering, 2008, 37(2): 274 -277. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200802020.htm

    [5] 林德福, 王志伟, 王江. 滚仰式导引头奇异性分析与控制[J]. 北京理工大学学报, 2010, 11(11): 1265-1269. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201011003.htm

    LIN Defu, WANG Zhiwei, WANG Jiang. Singularity analysis of roll- pitch seeker and its control strategy[J]. Transactions of Beijing Institute of Technology, 2010, 30 (11): 1265-1269. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201011003.htm

    [6] 孙志朋, 赵世明, 孙致月. 红外成像制导半实物仿真安装误差分析与修正[J]. 红外技术, 2020, 42(2): 139-143. http://hwjs.nvir.cn/article/id/hwjs202002006

    SUN Zhipeng, ZHAO Shiming, SUN Zhiyue. Infrared imaging guidance semi-physical simulation, installation error analysis, and correction[J]. Infrared Technology, 2020, 42(2): 139-143. http://hwjs.nvir.cn/article/id/hwjs202002006

    [7] 王霞, 朱妍, 钱帅, 等. 一种红外导引头注入式试验中目标场景复杂度的评估方法[J]. 红外技术, 2019, 41(9): 874-881. http://hwjs.nvir.cn/article/id/hwjs201909012

    WANG Xia, ZHU Yan, QIAN Shuai, et al. Target scene complexity metrics based on digital image injection test for IR imaging seeker[J]. Infrared Technology, 2019, 41(9): 874-881. http://hwjs.nvir.cn/article/id/hwjs201909012

  • 期刊类型引用(0)

    其他类型引用(1)

图(6)
计量
  • 文章访问数:  274
  • HTML全文浏览量:  85
  • PDF下载量:  46
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-07-14
  • 修回日期:  2021-05-27
  • 刊出日期:  2021-06-19

目录

/

返回文章
返回