基于扩张状态观测器的快速反射镜滑模控制

缑泽恩, 韩顺杰, 李双成, 粟华

缑泽恩, 韩顺杰, 李双成, 粟华. 基于扩张状态观测器的快速反射镜滑模控制[J]. 红外技术, 2024, 46(2): 150-154.
引用本文: 缑泽恩, 韩顺杰, 李双成, 粟华. 基于扩张状态观测器的快速反射镜滑模控制[J]. 红外技术, 2024, 46(2): 150-154.
GOU Zeen, HAN Shunjie, LI Shuangcheng, SU Hua. Fast-Steering-Mirror Slip-Mode Control Based on Extended State Observer[J]. Infrared Technology , 2024, 46(2): 150-154.
Citation: GOU Zeen, HAN Shunjie, LI Shuangcheng, SU Hua. Fast-Steering-Mirror Slip-Mode Control Based on Extended State Observer[J]. Infrared Technology , 2024, 46(2): 150-154.

基于扩张状态观测器的快速反射镜滑模控制

基金项目: 

吉林省重点研发项目“多源干扰下光电稳定平台视轴稳定及视觉伺服技术” 20210201025GX

详细信息
    作者简介:

    缑泽恩(1999-),男,陕西省蒲城人,硕士研究生,主要从事于光电伺服跟踪方向的工作与研究。E-mail: 2440468503@qq.com

    通讯作者:

    韩顺杰(1972-),女,吉林省白山人,博士生导师,主要从事电力装备故障诊断与智能运维、光电伺服跟踪、工业节能技术与装备方面的研究。E-mail: hanshunjie@ccut.edu.cn

  • 中图分类号: TP394.1;TH691.9

Fast-Steering-Mirror Slip-Mode Control Based on Extended State Observer

  • 摘要: 快速反射镜需要具备快速的动态响应以及抗干扰能力。针对快速反射镜系统在工作环境中,因自身运动以及外界干扰等因素所引起的不确定性干扰问题,本文在对快速反射镜系统进行分析与数学建模的基础上,提出一种基于扩张状态观测器的改进滑模控制器,利用扩张状态观测器观测出未知扰动并直接补偿给控制器,在保证跟踪误差在期望精度范围的同时,有效减少了抖振,便于工程实现。通过仿真实验证明:相较于传统滑模控制器,采用基于扩张状态观测器的改进滑模控制器,上升时间缩短了50.4%,调节时间上缩短了39.1%,跟踪精度提高了30.5%,满足了快速反射镜的工作要求,提高了动态性能。
    Abstract: Fast-steering mirrors require a rapid dynamic response and an anti-interference ability. In this study, an improved sliding-mode controller based on an extended state observer is proposed to solve the uncertain interference caused by self-movement, external interference, and other factors in the working environment of a fast-steering-mirror system based on the analysis and mathematical modeling of the fast-steering-mirror system. The proposed system uses an extended state observer to observe the unknown disturbance and directly compensate it to the controller, which effectively reduces chattering and facilitates engineering implementation. The simulation results show that compared with the traditional sliding-mode controller, the improved sliding-mode controller based on the extended state observer decreases the rise and adjustment times by 50.4% and 39.1%, respectively, and increases the tracking accuracy by 30.5%. These values satisfy the working requirements of the fast mirror and improves the dynamic performance.
  • 图  1   音圈电机等效电路图

    Figure  1.   Equivalent circuit diagram of VCA

    图  2   基于扩张状态观测器的滑模控制结构框图

    Figure  2.   Fragments of sliding mold control structure based on the extended state observer

    图  3   快速反射镜系统阶跃响应

    Figure  3.   Step response of fast steering mirror

    图  4   快速反射镜系统正弦响应曲线

    Figure  4.   Sine response curves of fast steering mirror

    图  5   正弦跟踪误差曲线

    Figure  5.   Sine tracking error curves

  • [1]

    Pereira P, Hunwardsen M T, Cahoy K. Characterization of laser thermal loading on microelectromechanical systems-based fast steering mirror in vacuum[J]. Optical Engineering, 2020, 59(5): 056109.

    [2] 刘力双, 夏润秋, 吕勇, 等. 音圈电机快速控制反射镜研究现状[J]. 激光杂志, 2020, 41(9): 1-7.

    LIU L S, XIA R Q, LV Y, et al. The status research statue of quickly control permiars of audio motors[J]. Laser Journal, 2020, 41(9): 1-7.

    [3] 冯爽. 快速反射镜的高精度控制策略研究[D]. 西安: 西安电子科技大学, 2021.

    FENG S. Research on High-precision Control Strategies for Fast Mirrors[D]. Xi'an: Xi'an University of Electronic Science and Technology, 2021

    [4] 刘泊, 郭建英, 孙永全. 压电陶瓷微位移驱动器建模与控制[J]. 光学精密工程, 2013, 21(6): 1503-1509.

    LIU B, GUO J Y, SUN Y Q. Cangers ceramic micro -displacement driving model modeling and control[J]. Optical Precision Engineering, 2013, 21(6): 1503-1509.

    [5]

    WANG G, RAO C. Adaptive control of piezoelectric fast steering mirror for high precision tracking application[J]. Smart Materials & Structures, 2015, 24(3): 035019. DOI: 10.1088/0964-1726/24/3/035019

    [6] 李贤涛, 张晓沛, 毛大鹏, 等. 高精度音圈快速反射镜的自适应鲁棒控制[J]. 光学精密工程, 2017, 25(9): 2428-2436.

    LI X T, ZHANG X P, MAO D P. et al. Adaptive robust control of high-precision sound rims of fast reflectors[J]. Optical Precision Engineering, 2017, 25(9): 2428-2436.

    [7] 丁科, 黄永梅, 马佳光. 抑制光束抖动的快速反射镜复合控制[J]. 光学精密工程, 2011, 19(9): 1991-1998.

    DING K, HUANG Y M, MA J G. Fast-reflective mirror composite control of the beam jitter[J]. Optical Precision Engineering, 2011, 19(9): 1991-1998.

    [8] 赵继庭, 金刚石, 高旭辉. 基于快速反射镜的模糊自适应PID控制算法研究[J]. 激光与红外, 2018, 48(6): 756-761.

    ZHAO J T, JIN G S, GAO X H. Research on the blog PID control algorithm based on fast purchables[J]. Laser and Infrared, 2018, 48(6): 756-761.

    [9] 韩京清. 自抗扰控制技术——估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008.

    HAN J Q. Self-antidation Control Technology-Control Technology of Estimation Compensation Uncertain Factors[M]. Beijing: National Defense Industry Press, 2008.

    [10]

    Youm W, Lee S Q, Park K. Optimal design and control of a voice coil motor driven flexure hinge for AFM actuator[C]//IEEE/asme International Conference on Advanced Intelligent Mechatronics, 2005: 325-328.

    [11] 黄浦, 杨秀丽, 修吉宏, 等. 音圈致动快速反射镜的降阶自抗扰控制[J]. 光学精密工程, 2020, 28(6): 1365-1374.

    HUANG P, YANG X L, XIU J H, et al. The audio coil actuates the reduction of self-relief control of fast reflectives[J]. Optical Precision Engineering, 2020, 28(6): 1365-1374.

    [12]

    GAO Z. Active disturbance rejection control: a paradigm shift in feedback control system design[C]//American Control Conference of IEEE, 2006: 1656579.

  • 期刊类型引用(0)

    其他类型引用(3)

图(5)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  47
  • PDF下载量:  24
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-08-07
  • 修回日期:  2023-09-01
  • 刊出日期:  2024-02-19

目录

    /

    返回文章
    返回
    x 关闭 永久关闭

    尊敬的专家、作者、读者:

    端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

    感谢您对本刊的支持!

    《红外技术》编辑部

    2024年6月6日