基于扩张状态观测器的快速反射镜滑模控制

Fast-Steering-Mirror Slip-Mode Control Based on Extended State Observer

  • 摘要: 快速反射镜需要具备快速的动态响应以及抗干扰能力。针对快速反射镜系统在工作环境中,因自身运动以及外界干扰等因素所引起的不确定性干扰问题,本文在对快速反射镜系统进行分析与数学建模的基础上,提出一种基于扩张状态观测器的改进滑模控制器,利用扩张状态观测器观测出未知扰动并直接补偿给控制器,在保证跟踪误差在期望精度范围的同时,有效减少了抖振,便于工程实现。通过仿真实验证明:相较于传统滑模控制器,采用基于扩张状态观测器的改进滑模控制器,上升时间缩短了50.4%,调节时间上缩短了39.1%,跟踪精度提高了30.5%,满足了快速反射镜的工作要求,提高了动态性能。

     

    Abstract: Fast-steering mirrors require a rapid dynamic response and an anti-interference ability. In this study, an improved sliding-mode controller based on an extended state observer is proposed to solve the uncertain interference caused by self-movement, external interference, and other factors in the working environment of a fast-steering-mirror system based on the analysis and mathematical modeling of the fast-steering-mirror system. The proposed system uses an extended state observer to observe the unknown disturbance and directly compensate it to the controller, which effectively reduces chattering and facilitates engineering implementation. The simulation results show that compared with the traditional sliding-mode controller, the improved sliding-mode controller based on the extended state observer decreases the rise and adjustment times by 50.4% and 39.1%, respectively, and increases the tracking accuracy by 30.5%. These values satisfy the working requirements of the fast mirror and improves the dynamic performance.

     

/

返回文章
返回