基于改进YOLO v5方法的电力设备红外图像识别方法

王小栋, 吕通发, 鲍明正, 何永春, 辛鹏, 吴涛

王小栋, 吕通发, 鲍明正, 何永春, 辛鹏, 吴涛. 基于改进YOLO v5方法的电力设备红外图像识别方法[J]. 红外技术, 2024, 46(6): 722-727.
引用本文: 王小栋, 吕通发, 鲍明正, 何永春, 辛鹏, 吴涛. 基于改进YOLO v5方法的电力设备红外图像识别方法[J]. 红外技术, 2024, 46(6): 722-727.
WANG Xiaodong, LYU Tongfa, BAO Mingzheng, HE Yongchun, XIN Peng, WU Tao. Infrared Image Recognition Method for Power Equipment Based on Improved YOLO v5[J]. Infrared Technology , 2024, 46(6): 722-727.
Citation: WANG Xiaodong, LYU Tongfa, BAO Mingzheng, HE Yongchun, XIN Peng, WU Tao. Infrared Image Recognition Method for Power Equipment Based on Improved YOLO v5[J]. Infrared Technology , 2024, 46(6): 722-727.

基于改进YOLO v5方法的电力设备红外图像识别方法

基金项目: 

国网内蒙古东部电力有限公司科技项目 52664020001S

详细信息
    作者简介:

    王小栋(1975-),男,本科,高级工程师(副教授级),主要从事输变电运维检修技术方面的研究工作,E-mail:13951423028@139.com

  • 中图分类号: TM85

Infrared Image Recognition Method for Power Equipment Based on Improved YOLO v5

  • 摘要:

    为解决电力设备红外图像有遮挡、分类不准确和特征提取不充分等问题,本文提出一种改进的YOLO v5识别方法。首先通过迁移学习的方法,将电力设备可见光图像和红外图像相融合,接着将Triplet注意力机制嵌入到特征提取网络中,对关键特征信息进行加权强化,最后通过多尺度融合的方法实现不同目标的识别。研究结果表明:相对于Faster R-CNN和SSD,本文方法的识别精度和识别效率最高,且适应于复杂背景下的多类型电力设备识别;本文方法的模型仅4.1 MB,相较于SSD缩减了80.8%,实现了网络模型的轻量化。本文方法为电力设备红外图像智能检测提供了新颖可行的方案。

    Abstract:

    This study proposes an improved YOLO v5 method to solve the problems of inaccurate classification and insufficient feature extraction from power equipment infrared images. First, the visible light data and infrared images of the power equipment were fused using the transfer learning method. The triplet attention mechanism was then embedded into the feature extraction network for weighted intensification of key feature information. Finally, different targets were identified using multiscale fusion. The results show that compared with faster R-CNN and SSD, the proposed method has higher recognition accuracy and efficiency and is suitable for image recognition of multi-type power equipment in complex backgrounds. This method realizes a lightweight network model with a size of only 4.1 MB, which is a reduction of 80.8% compared to that of SSD, providing a novel and feasible scheme for intelligent infrared image detection of power equipment.

  • 直液式走珠笔是一种借鉴了钢笔结构的走珠笔,与传统的走珠笔相比,墨水流动性更好,其墨水的性质与钢笔相似,比中性笔的墨水更稀,目前成为了市场上主流书写工具。因此建立直液式走珠笔的油墨种类鉴别方法对于司法鉴定工作具有重大意义。书写墨水的种属鉴定一直是法庭科学领域的研究重点,不仅可以为文件真伪鉴定提供依据[1],还能缩小侦查范围[2],成为认定案件事实的证据。目前国内法庭科学领域区分直液式走珠笔这种新型笔种墨水的文献较少[3],而传统检验笔墨水成分的方法有光学检验法、色谱法、质谱法[4]、光谱法等方法[5]。其中质谱法[6]、色谱法、溶解法均属于有损检验,不符合当今无损检验的主流,破坏了检材案发时的完整性,而光谱法具有快速、无损检验的特点,广泛应用于墨水检验中[3]

    国内外学者针对墨水检验展开了许多实验研究,证实了傅里叶变换红外光谱法结合主成分分析可以检验墨水[7-9],也有学者尝试将化学计量学[10-14]等技术应用于墨水、纸张等物证的检验,然而这些检验方法较为依赖样本标签,大多根据人为预设标签构建模型对样品进行大致分类,且缺少了评估分类变量对模型的贡献程度,难以做到客观、准确地检验墨水。目前K-均值聚类与组均值均等检验具有较好的稳定性,已被用于药物、细菌的检验,并且得到了较好的结果[15-16]。因此本文尝试结合光谱数据与K-均值聚类预先得出分类标签,采集市面上常见的20个直液式走珠笔样品,利用傅里叶变换红外光谱仪对样品进行检验并获得红外光谱谱图[8],采取自动基线矫正、峰面积归一化、Savitzky-Golay5点平滑3种方法对谱图做预处理后,通过误差平方和指标(sum of the squares errors,SSE)确定最优K取值,对样品进行K-均值聚类得到样品的初步聚类结果,将聚类结果作为分类标签,采用主成分分析[10]对原始数据降维,对样品进行分类,利用组均值均等检验考察主成分降维后的变量对Fisher判别模型的贡献程度,根据考察结果选取判别函数建立Fisher判别模型,从而为直液式走珠笔油墨的快速鉴定提供一种新的方式。

    傅里叶变换红外光谱(Fourier transform infrared spectroscopy, FTIR)是一种通过数学处理将傅里叶变换,结合计算机与红外光谱技术的分析方法。傅里叶红外光谱法首先测量目标干涉图,通过对该图进行傅里叶变换获得对应的红外光谱数据,是一种无损、快速检验样品成分的方法[17]

    组内误差平方和代表数据误差大小的偏差平方和。随着聚类的类别K值增加,样品会被归类到更加精细的簇中,SSE会随之减少,期间SSE的下降幅度会骤减形成一个拐点,然后随着K值的继续增大而趋于平缓,该拐点就是聚类类别K值的最优取值。

    K-均值聚类是一种划分样本为K个集合的聚类算法,是无监督学习类型的算法,通过迭代找到最佳聚类个数的一种划分方案,使得用K个聚类的均值来表示相应各类样本时所得到的总体误差最小,所以K均值聚类是以最小误差平方和为划分集合依据的聚类算法。其原理是根据预先设定的K值,将K个样本作为聚类的K个聚类中心,计算所得其余样品和每个聚类中心的欧几里距离,将其余样品分配给距离最近的聚类中心,通过多次迭代达到最优结果。

    主成分分析(principal components analysis, PCA)是一种降低光谱数据特征维度的方法,通过线性变换把原始数据从原始坐标系统变换到一个新坐标系统中,从而达到降低原始数据特征维度,同时获得对原始数据信息方差贡献最大的特征。可通过主成分分析提取样品光谱数据的最大主成分,进一步构建2维主成分得分图,验证K-均值聚类结果的准确性。

    组均值均等检验的目的是评价分组变量对分组模型贡献程度,将分组变量作为因子得出每个自变量的单因素ANOVA(analysis of variance)分析结果,根据分析结果得出对分组模型贡献程度较高的变量,之后用该变量构建Fisher判别模型。

    判别分析是在样本分类确定的前提下,按照未知样品特征所反映的信息判别其类别归属的一种统计分析法。按照相应的规则,构建一至多个判别函数,根据已有样品的大量数据信息计算待定系数从而确定判别函数,计算判别指标,进而推断未知样品的归属[18]

    实验仪器为NICOLET5700傅里叶变换红外光谱仪,分辨率4 cm-1,扫描次数16次,扫描面积为100 μm×100 μm,扫描范围4000~400 cm-1

    从各地收集不同品牌、不同型号样本共20个,均为黑色墨水,其中样品1~样品10为白雪品牌,样品11~样品13为晨光品牌,样品14~样品20为百乐品牌。

    用收集到的直液式走珠笔油墨样品制作检材,在上述实验条件下进行检测,为了保证数据的可复现性,每份检测均检测3次,以确保实验结果的可靠性[19]。光谱数据中存在大量冗余信息,会影响后续化学计量学方法的使用,因此采用The Unscrambler X 10.4(挪威CAMO公司)对光谱信号进行自动基线矫正、峰面积归一化、Savitzky-Golay5点平滑处理[20]。下面将通过化学计量学对样品光谱数据进行分析[21]

    K的取值很大程度上决定了K-均值聚类的准确性,故引入手肘法(elbow method)确定K的最优取值,手肘法的核心指标是SSE,如式(1)所示:

    $$ SSE = {\sum\nolimits_{i = 1}^k {\sum\nolimits_{p \in {C_i}} {\left| {p - {m_i}} \right|} } ^2} $$ (1)

    式中:Ci是第i个簇;pCi中的样本点;miCi的质心(Ci中所有样本的均值);SSE是所有样本的聚类误差,SSE值越小代表聚类效果越好。

    聚类数K值的增大会使得样本相应簇的划分更加精准,SSE会逐渐变小。因此K从小到大逐渐增加的过程中,SSE会逐渐变小,期间K会存在一个真实聚类数的临界点,当K值从临界点左侧增加到真实聚类数时,SSE会发生迅速地下降,然后随着K逐渐增大趋于平缓。SSE和K关系图会有一个拐点,该拐点对应的K值就是数据的真实聚类数。从图 1可知,K从1~3时下降得很快,当K取值≥3后,曲线下降逐渐趋于平缓,所以最佳聚类个数为3。

    图  1  SSE与簇的数量关系图
    Figure  1.  The quantitative graph of SSE and clusters

    K=3时,对样品进行K-均值聚类,聚类结果图如图 2所示。

    图  2  K-均值聚类结果
    Figure  2.  K-means clustering results

    图 2可得,当K=3时,所有样品在二维平面被显著地分为了3类,且各类样品在红外谱图中存在明显的区别,表现为:第一类样品(7#)中存在CS伸缩振动,CH面内弯曲振动以及C=C伸缩振动,出峰位置分别为1172 cm-1,1388 cm-1以及1577 cm-1;第二类样品(13#)中存在972 cm-1的CH的变形振动,以及1353 cm-1和1470 cm-1的CH的面内弯曲振动;第三类样品(18#)中存在1461 cm-1的CH的面内弯曲振动,结果如表 1图 3所示。为了验证K-均值聚类这一无监督学习的准确性,根据聚类结果划分样品的类别,采用主成分分析将各个类别的样品投影到二维平面进行验证。

    表  1  样品聚类结果
    Table  1.  Clustering results of samples
    Classification Sample number
    1
    2
    1#、2#、3#、4#、5#、6#、7#、8#、9#、10#
    11#、12#、13#
    3 14#、15#、16#、17#、18#、19#、20#
    下载: 导出CSV 
    | 显示表格
    图  3  三种样品红外谱图比较
    Figure  3.  Comparison of infrared spectra of three samples

    主成分分析是一种无监督学习的方法,通过将原始多维数据投影到新坐标系统重新组合成一组新的线性无关数据来代替原始数据,同时尽可能地反映原始数据特征信息[21]。PCA共提取了6个PC,图 4显示了不同PC的方差贡献率及累计贡献率,其中PC1方差贡献率最大,为80.466%,前6个PC的累计方差贡献率为98.556%,包含了原始数据的绝大多数信息。以PC1、PC2和PC3绘制PCA的2维主成分得分图,如图 5所示,样本基于其在PC1、PC2、PC3上的得分被分为了3类,组内距离较小,组间距离较大,验证了K-均值聚类的聚类结果。考虑到实际中需要预测未知样本,本文采用Fisher判别分别建立3类样品的预测模型。

    图  4  各成分贡献率分布图
    Figure  4.  Distribution of contribution rate of each component
    图  5  PCA得分图
    Figure  5.  2D score chart of PCA

    为了实现对未知样品的预测,构建Fisher判别模型前,使用组均值均等检验考察分组变量对分组模型贡献程度。组间均方与组内均方的比值为F统计量,两个自由度分别为自由度1(df1)和自由度2(df2),分别表示残差平方和自由度和回归平方和自由度,自由度1为分子,自由度2为分母,两个自由度用来得到观测显著性(Sig值)。显著性(Sig)和Wilks’lambda是评价分组变量的标准。Sig值表示区分不同组别的能力,如果Sig值较小(Sig < 0.10)则表明组间差异较为显著,如果Sig值较大(Sig>0.10)则表示组间差异不显著。PC1的Sig值为0.000,表面PC1在各组间的差异不显著。组内平方和与总平方和的比值为Wilks’lambda,值的范围在0~1之间,值越小表示组内有很大差异,值接近1表示没有组内差异。根据K-均值聚类结果划分样品类别,用组均值均等性检验,结果如表 2所示,PC3~PC6的Wilks’Lambda均大于0.97,表明这4个变量组内差异很小,对模型影响不显著,且sig值均大于0.10,表明这四者不能充分解释各样本的分类情况。PC1和PC2的Wilks’Lambda均接近0,表明这两个变量对判别模型影响的显著性极高,且Sig值均为0,可表明这两个变量可以很好地解释各样本的分组信息。因此选取前两个变量构建Fisher判别模型。

    表  2  各组平均值的均等性检验
    Table  2.  Equality verification of the average value of each group
    Variable Wilks Lambda F df1 df2 Sig
    PC1 0.108 69.946 2 17 0.000
    PC2 0.061 131.335 2 17 0.000
    PC3 0.974 0.223 2 17 0.802
    PC4 0.975 0.217 2 17 0.807
    PC5 0.988 0.106 2 17 0.900
    PC6 0.998 0.021 2 17 0.980
    下载: 导出CSV 
    | 显示表格

    在构建Fisher判别模型中使用前两个典则判别函数F1F2,其中F1=-0.028PC1-24.94PC2-10.932,F2=34.764PC1-39.654PC2-48.976。表 3为Fisher判别函数摘要,判别函数1(F1)的方差贡献率为81.0%,判别函数2(F2)的方差贡献率为19.0%,两者累计方差贡献率达到了100%,表明这两个函数能完全反映样品光谱特征中的信息。F1F2的相关性大于0.95,表明不同样本类别与F1F2的相关性很强。观察到F1F2在函数检验(Function test)中的Wilks’Lambda数值分别为0.002和0.083,均接近0,表明这两个判别函数对模型影响的显著性很高,Sig值均为0,表明这两个判别函数对变量的可解释度很高,具有充分解释样本分类的能力,综上选用F1F2这两个函数作为判别函数,构建Fisher判别模型进行分类,用留一法(Leave-One-Out Cross Validation)作为验证模型的方法。选择函数1(F1)和函数2(F2)绘制判别函数联合分布图,如图 6所示。由图 6表 4的结果可得,该判别模型对3类样本实现了正确率100%的分类,同时经过留一法验证后模型正确率仍为100%。如果需要区分未知样品,只需将该样品相应的红外光谱数据输入模型,判别函数联合分布图中就会显示出该未知样品位置及与其相距最近的分组质心,从而推断出未知样品属于哪一类别。

    表  3  Fisher判别函数摘要
    Table  3.  Summary of Fisher's discriminant functions
    Function Variance contribution% Cumulative contribution% Correlation Function test Wilks’Lambda Sig
    F1 81.0 81.0 0.990 1 to 2 0.002 0.000
    F2 19.0 100.0 0.958 2 0.083 0.000
    下载: 导出CSV 
    | 显示表格
    图  6  判别函数联合分布图
    Figure  6.  Joint distribution of discriminant functions
    表  4  分类结果
    Table  4.  Classification results
    Categories Predicted
    1 2 3

    Observed
    1 10(10) 0 0
    2 0 3(3) 0
    3 0 0 7(7)
    下载: 导出CSV 
    | 显示表格

    本文借助了傅里叶变换红外光谱仪对20种直液式走珠笔墨水成分及含量进行了快速无损检验,建立了一种鉴别直液式走珠笔墨水类别的方法。首先对样品的傅里叶变换红外光谱数据进行自动基线矫正、峰面积归一化、Savitzky-Golay5点平滑3种预处理方法。采取组内误差平方和指标得出K-均值聚类的最优K取值,对样品进行K-均值聚类,实现了对直液式走珠笔墨水样品初步分类。对各类样品K-均值聚类结果进行主成分分析,绘制主成分二维得分图使各类样品之间的关系更加明确,同时验证了K-均值聚类结果的准确性。使用组均值均等检验评价PCA降维后的分组变量对FDA模型的贡献程度,得到两个具有较高贡献程度的判别函数,用该判别函数构建Fisher判别模型对3类样本进行分类识别,3类样品均被正确地分类为实际对应的3种品牌,分类正确率达到100%,交叉验证后预测正确率为100%。可通过该模型对案件涉及的未知直液式走珠笔墨水物证进行快速分类,为司法检验鉴定提供帮助。

  • 图  1   多尺度融合处理结构

    Figure  1.   Processing structure of multi-scale fusion

    图  2   TA机制原理

    Figure  2.   Principle of TA mechanism

    图  3   DIOU_NMS损失函数

    Figure  3.   Loss function of DIOU_NMS

    图  4   多种电力设备的可见光图像

    Figure  4.   Visible light images of various electrical equipment

    图  5   不同算法的识别结果

    Figure  5.   Recognition results of different algorithms

    表  1   环境要求

    Table  1   Environment configuration

    Item Configuration
    OS Windows 11
    CPU Intel Xeon Silver 4114T 12C
    GPU NVIDIA GTX1080Ti
    RAM 64 GB
    Deep learning framework PyTorch 1.8
    Hard disk 1T
    下载: 导出CSV

    表  2   不同改进方法的识别效果

    Table  2   Recognition effect of different improvement methods

    Power equipment Method 1 Method 2 Ours
    Insulator AP 0.85 0.87 0.95
    Arrester AP 0.86 0.89 0.98
    CT AP 0.89 0.97 0.99
    PT AP 0.87 0.96 0.98
    Transformer bushing AP 0.89 0.92 0.97
    mAP 0.87 0.92 0.97
    recognition time /ms 27 7.8 5.6
    下载: 导出CSV

    表  3   不同识别算法的效果

    Table  3   Effects of different recognition algorithms

    Methods mAP mRC Recognition
    time/ms
    Ours 0.95 0.97 5.8
    SSD 0.85 0.88 32
    Faster R-CNN 0.91 0.93 78
    下载: 导出CSV

    表  4   不同方法的参数量与模型大小

    Table  4   Number of parameters and model size of different methods

    Methods mAP@0.5 mAP@0.8 Parameter quantity /M FLOPs/G size/MB
    Ours 0.97 0.92 0.18 4.2 4.1
    YOLO v5s 0.92 0.87 1.32 30.1 29
    YOLO v4 0.94 0.83 9.83 323.9 257
    Faster R-CNN 0.92 0.81 5.89 145.9 113
    SSD 0.86 0.82 0.99 23.8 21.4
    下载: 导出CSV
  • [1] 陈俊佑, 金立军, 段绍辉, 等. 基于Hu不变矩的红外图像电力设备识别[J]. 机电工程, 2013, 30(1): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JDGC201301003.htm

    CHEN Junyou, JIN Lijun, DUAN Shaohui, et al. Power equipment identification in infrared image based on Hu invariant moments[J]. Journal of Mechanical & Electrical Engineering, 2013, 30(1): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JDGC201301003.htm

    [2] 邹辉, 黄福珍. 基于改进Fast-Match算法的电力设备红外图像多目标定位[J]. 中国电机工程学报, 2017, 37(2): 591-598. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201702027.htm

    ZOU Hui, HUANG Fuzhen. Multi-target localization for infrared images of electrical equipment based on improved fast-match algorithm[J]. Proceedings of the CSEE, 2017, 37(2): 591-598. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201702027.htm

    [3] 郑含博, 李金恒, 刘洋, 等. 基于改进YOLOv3的电力设备红外目标检测模型[J]. 电工技术学报, 2021, 36(7): 1389-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202107009.htm

    ZHENG Hanbo, LI Jinheng, LIU Yang, et al. Infrared target detection model for power equipment based on improved YOLO v3[J]. Electrotechnical Technology, 2021, 36(7): 1389-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202107009.htm

    [4] 徐奇伟, 黄宏, 张雪锋, 等. 基于改进区域全卷积网络的高压引线接头红外图像特征分析的在线故障诊断方法[J]. 电工技术学报, 2021, 36(7): 1380-1388. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202107008.htm

    XU Qiwei, HUANG Hong, ZHANG Xuefeng, et al. On-line fault diagnosis method based on infrared image feature analysis of high-voltage lead connector based on improved area full convolutional network[J]. Transactions of the Chinese Society of Electrical Engineering, 2021, 36(7): 1380-1388. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202107008.htm

    [5] 罗舜. 电力变压器套管将军帽发热故障的红外诊断分析[J]. 变压器, 2018, 55(1): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-BYQZ201801018.htm

    LUO Shun. Infrared diagnosis analysis of power transformer bushing coupler heating[J]. Transformer, 2018, 55(1): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-BYQZ201801018.htm

    [6] 张杰, 付泉泳, 袁野. 变压器局部放电带电检测技术应用研究[J]. 变压器, 2018, 55(8): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-BYQZ201905024.htm

    ZHANG Jie, FU Quanyong, YUAN Ye. Application research of electric detection technology of partial discharge for transformer[J]. Transformer, 2018, 55(8): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-BYQZ201905024.htm

    [7] 吕俊, 王福田, 汤进, 等. 基于全景温度场的电力设备在线自动识别与诊断[J]. 计算机与现代化, 2015(8): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JYXH201508004.htm

    LV Jun, WANG Futian, TANG Jin, et al. Online automatic recognition and diagnosis of electrical devices via thermal panorama[J]. Computer and Modernization, 2015(8): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JYXH201508004.htm

    [8] 商俊平, 李储欣, 陈亮. 基于视觉的绝缘子定位与自爆缺陷检测[J]. 电子测量与仪器学报, 2017, 31(6): 844-849. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY201706007.htm

    SHANG Junping, LI Chuxin, CHEN Liang. Location and detection for self-explode insulator based on vision[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(6): 844-849. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY201706007.htm

    [9] 周可慧, 廖志伟, 肖异瑶, 等. 基于改进CNN的电力设备红外图像分类模型构建研究[J]. 红外技术, 2019, 41(11): 1033-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201911007.htm

    ZHOU Kehui, LIAO Zhiwei, XIAO Yiyao, et al. Construction of infrared image classification model for power equipments based on improved CNN[J]. Infrared Technology, 2019, 41(11): 1033-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201911007.htm

    [10] 赵乐, 王先培, 姚鸿泰, 等. 基于可见光航拍图像的电力线提取算法综述[J]. 电网技术: 2021, 45(4): 1536-1546. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS202104035.htm

    ZHAO Le, WANG Xianpei, YAO Hongtai, et al. Summary of power line extraction algorithms based on visible light aerial images[J]. Power System Technology: 2021, 45(4): 1536-1546. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS202104035.htm

    [11] 史晋涛, 李喆, 顾超越, 等. 基于样本扩充的Faster R-CNN电网异物监测技术[J]. 电网技术, 2020, 44(1): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS202001005.htm

    SHI Jintao, LI Zhe, GU Chaoyue, et al. Faster R-CNN power grid foreign body monitoring technology based on sample expansion[J]. Power System Technology, 2020, 44(1): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS202001005.htm

    [12] 乔林, 孙宝华, 徐立波, 等. 多特征联合稀疏表示的电力设备图像识别方法[J]. 自动化技术与应用, 2020, 39(11): 120-123. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHJ202011026.htm

    QIAO Lin, SUN Baohua, XU Libo, et al. Power equipment image recognition method based on multi-feature joint sparse representation[J]. Automation Technology and Application, 2020, 39(11): 120-123. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHJ202011026.htm

    [13] 李文璞, 谢可, 廖逍, 等. 基于Faster RCNN变电设备红外图像缺陷识别方法[J]. 南方电网技术, 2019, 13(12): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-NFDW202110012.htm

    LI Wenpu, XIE Ke, LIAO Xiao, et al. Based on faster RCNN substation equipment infrared image defect recognition method[J]. Southern Power Grid Technology, 2019, 13(12): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-NFDW202110012.htm

    [14] 杨光俊. 卷积神经网络在电力设备红外图像识别中的应用研究[D]. 广州: 华南理工大学, 2019.

    YANG Guangjun. Research on the Application of Convolutional Neural Network in Infrared Image Recognition of Power Equipment[D]. Guangzhou: South China University of Technology, 2019.

    [15] 付强, 姚建刚, 李唐兵, 等. 基于红外图像的绝缘子串钢帽和盘面区域自动提取方法[J]. 红外技术, 2016, 38(11): 969-974. http://hwjs.nvir.cn/cn/article/id/hwjs201611011

    FU Qiang, YAO Jiangang, LI Tangbing, et al. Automatic extraction method of steel cap and disk area of insulator string based on infrared image[J]. Infrared Technology, 2016, 38(11): 969-974. http://hwjs.nvir.cn/cn/article/id/hwjs201611011

    [16] 马鹏, 樊艳芳. 基于深度迁移学习的小样本智能变电站电力设备部件检测[J]. 电网技术, 2020, 44(3): 1148-1159. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS202003041.htm

    MA Peng, FAN Yanfang. Small sample smart substation power equipment component detection based on deep transfer learning[J]. Power System Technology, 2020, 44(3): 1148-1159. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS202003041.htm

    [17]

    Tianchi J, LI Qiang, MAOSONG L, et al. Target detection method combining inverted residual block and YOLO v3[J]. Transducer and Microsystem Technologies, 2019, 36(11): 56-61.

    [18] 王昕, 赵飞, 蒋佐富, 等. 迁移学习和卷积神经网络电力设备图像识别方法[J]. 中国测试, 2020, 46(5): 108-113. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202005018.htm

    WANG Xin, ZHAO Fei, JIANG Zuofu, et al. Transfer learning and convolutional neural network power equipment image recognition method[J]. China Test, 2020, 46(5): 108-113. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202005018.htm

    [19]

    WU D, LV S, JIANG M, et al. Using channel pruning-based YOLOv4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments[J]. Computers and Electronics in Agriculture, 2020, 178(5): 174-178.

    [20]

    Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM: visual explanations from deep networks via gradient based localization[C]//2017 IEEE International Conference on Computer Vision, 2017: 102-105.

  • 期刊类型引用(1)

    1. 焦晓杰. 基于时空域滤波的雾天舰船图像视觉传达方法. 舰船科学技术. 2023(03): 173-176 . 百度学术

    其他类型引用(2)

图(5)  /  表(4)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  17
  • PDF下载量:  40
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-03-29
  • 修回日期:  2022-04-25
  • 网络出版日期:  2024-06-23
  • 刊出日期:  2024-06-19

目录

/

返回文章
返回
x 关闭 永久关闭

尊敬的专家、作者、读者:

端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

感谢您对本刊的支持!

《红外技术》编辑部

2024年6月6日