基于改进YOLO v5方法的电力设备红外图像识别方法

王小栋, 吕通发, 鲍明正, 何永春, 辛鹏, 吴涛

王小栋, 吕通发, 鲍明正, 何永春, 辛鹏, 吴涛. 基于改进YOLO v5方法的电力设备红外图像识别方法[J]. 红外技术, 2024, 46(6): 722-727.
引用本文: 王小栋, 吕通发, 鲍明正, 何永春, 辛鹏, 吴涛. 基于改进YOLO v5方法的电力设备红外图像识别方法[J]. 红外技术, 2024, 46(6): 722-727.
WANG Xiaodong, LYU Tongfa, BAO Mingzheng, HE Yongchun, XIN Peng, WU Tao. Infrared Image Recognition Method for Power Equipment Based on Improved YOLO v5[J]. Infrared Technology , 2024, 46(6): 722-727.
Citation: WANG Xiaodong, LYU Tongfa, BAO Mingzheng, HE Yongchun, XIN Peng, WU Tao. Infrared Image Recognition Method for Power Equipment Based on Improved YOLO v5[J]. Infrared Technology , 2024, 46(6): 722-727.

基于改进YOLO v5方法的电力设备红外图像识别方法

基金项目: 

国网内蒙古东部电力有限公司科技项目 52664020001S

详细信息
    作者简介:

    王小栋(1975-),男,本科,高级工程师(副教授级),主要从事输变电运维检修技术方面的研究工作,E-mail:13951423028@139.com

  • 中图分类号: TM85

Infrared Image Recognition Method for Power Equipment Based on Improved YOLO v5

  • 摘要:

    为解决电力设备红外图像有遮挡、分类不准确和特征提取不充分等问题,本文提出一种改进的YOLO v5识别方法。首先通过迁移学习的方法,将电力设备可见光图像和红外图像相融合,接着将Triplet注意力机制嵌入到特征提取网络中,对关键特征信息进行加权强化,最后通过多尺度融合的方法实现不同目标的识别。研究结果表明:相对于Faster R-CNN和SSD,本文方法的识别精度和识别效率最高,且适应于复杂背景下的多类型电力设备识别;本文方法的模型仅4.1 MB,相较于SSD缩减了80.8%,实现了网络模型的轻量化。本文方法为电力设备红外图像智能检测提供了新颖可行的方案。

    Abstract:

    This study proposes an improved YOLO v5 method to solve the problems of inaccurate classification and insufficient feature extraction from power equipment infrared images. First, the visible light data and infrared images of the power equipment were fused using the transfer learning method. The triplet attention mechanism was then embedded into the feature extraction network for weighted intensification of key feature information. Finally, different targets were identified using multiscale fusion. The results show that compared with faster R-CNN and SSD, the proposed method has higher recognition accuracy and efficiency and is suitable for image recognition of multi-type power equipment in complex backgrounds. This method realizes a lightweight network model with a size of only 4.1 MB, which is a reduction of 80.8% compared to that of SSD, providing a novel and feasible scheme for intelligent infrared image detection of power equipment.

  • 目前,类似于微光夜视仪的直视型微光装备可靠性试验主要通过“拷机”即静态工作过程来实现。试验时,参试人员间歇性地观察被试品显示端图像,通过人工判读被试品目镜视场的方法来确定被试品是否处于正常工作状态[1]。此方法存在以下不足:一是人工试验鉴定效率低且易发生漏检。可靠性试验具有工作量大、重复性高的特点。由于设备批量大,采用人工方法需要多名检测人员每天长时间工作、连续几个月以上才能完成,耗时耗力。而且,试验中人员间隔对设备进行检查,检查间隙内出现的偶发故障则很难被发现。加之检查很大程度取决于检查人员技术水平和检查经验,主观性大,极易发生漏检。二是人工试验鉴定缺乏有效的故障数据存储处理,不利于技术的持续改进。以人工检测为主的试验方法主要依靠肉眼识别,对出现的故障进行简短的文字描述与记载。这样的检测记录方式存在两个问题:一方面,人工检测记录在装备出现故障时难以完备具体、定性定量地记录故障对装备各个部件的影响,在提供故障检测报告时缺乏有力佐证,且由于故障出现的随机性,难以复现;另一方面,人工检测记录的方式缺乏有效的检测数据存储,无法形成故障数据样本集,这为技术改进增加了难度。

    综上所述,现有直视型装备的可靠性试验所存在的问题归根结底是检测手段无法满足日益增长的检测需求,因此亟需一种智能的、高效的替代人工检查的技术[2-3]。从图像中提取特征获得场景信息是区域监视、目标识别等领域的重要手段。图像质量评价方法可通过衡量图像变化程度来实现视场异常检测[4-5]。传统的图像质量评价方法包括利用图像像素偏离量度量图像下降质量的方法[6],如均方误差度量(Mean-Square Error,MSE)、峰值信噪比(Peak Signal to Noise Ratio,PSNR)等;计算图像像素灰度幅度变化(等价为图像边缘信息)衡量图像质量的方法[7];利用图像灰度分布计算信息熵的方法[8]等。基于小波变换[9]与结构相似性(Structural SIMilarity,SSIM)理论[10-12]的评估方法与人类视觉系统类似,其出现使图像质量评价的准确性有了较大提升。

    本文通过设计转接环连接相机与直视型微光装备进行图像的采集获取,采用结构相似性算法进行异常图像的自动检测,从而实现对直视型微光装备在可靠性试验中的故障诊断。

    基于SSIM算法的直视型微光装备可靠性试验故障诊断通过在被试品目镜上采用连接环固定图像采集设备的方法来获取图像,连续采集记录在被试品可靠性试验过程中目镜里的图像信息。通过设定图像模板,计算被试品监测图像与模板图像的相似度,识别被试品工作过程中的故障,标记、记录并报警,实现被试品工作过程中的故障自动监测。

    被试品与图像采集设备间的可靠连接是稳定采集图像的前提。文中利用直视型微光装备目镜上预留的眼罩螺纹与工业相机镜头上的滤镜螺纹进行可靠连接。按照被试品目镜上螺纹规格和相机镜头滤镜螺纹规格设计加工连接环,一端与被试品连接,另一端与视频采集设备镜头连接,即可实现被试品与图像采集设备间的可靠连接。采集图像时,通过手动调节被试品视度、相机焦距和被试品焦距来实现被试品图像的高清采集。在图像采集相机和镜头选定后,适配该相机的转接环尺寸也随即确定。实际应用中不同被试品眼罩转接环尺寸可能有所差异,为保证转接环能够适用多型装备,可预先按照常用眼罩螺纹规格设计加工系列与相机连接的转接环,如图 1所示的M21×0.7-M25.5×0.5,使用时,根据被试品眼罩螺纹规格,选用相匹配的转接环。

    图  1  转接环加工示意图
    Figure  1.  Adaptors processing diagram

    图像采集设备应尽量满足以下要求:

    1)图像采集的效果应尽可能模拟或超过人眼观察效果,保证软件处理的准确性;

    2)相机与被试品间的连接不影响被试品的正常操作和整体平衡,相机重量应尽量轻,体积尽量小;

    3)实际试验中可能存在多路图像同时采集的需求,为便于后期图像处理和管理,要求相机接口以Ethernet为主。

    文中选择高分辨率彩色相机(型号A3600MU60)作为图像采集设备,配置12mm 1:2.0 1/1.8″镜头。表 1展示了其基本参数。

    表  1  图像采集设备基本参数
    Table  1.  Basic parameters of image acquisition equipment
    Parameter Value
    Resolution 1920×1200
    Maximum frame rate 54fps@1920×1200
    Camera type Color camera
    Pixel size 4.8μm×4.8μm
    Exposure time 59μs-10s
    Data interface Gigabit Ethernet
    Power supply Voltage range 5-15 V,Support PoE power supply
    Power consumption 2.9 W@12VD
    Lens interface C-Mout
    下载: 导出CSV 
    | 显示表格

    SSIM算法利用图像像素间的相关性,结合亮度l、对比度c以及两个复杂结构信号间的结构变化s对图像质量进行客观量化评估。

    定义图像亮度为:

    $${\mu _x} = \frac{1}{N}\sum\limits_{i = 1}^N {{x_i}} $$

    式中:xi为图像第i个像素点的灰度值;N为图像的像素总个数。

    x为模板图像信号,y为待测图像信号。采用平均亮度(μx, μy)计算亮度相似性,定义为:

    $$l\left( {x,y} \right) = \frac{{2{\mu _x}{\mu _y} + {C_1}}}{{\mu _x^2 + \mu _y^2 + {C_1}}}$$

    采用标准差(σx, σy)来估计对比度相似性,定义为:

    $$c\left( {x,y} \right) = \frac{{2{\sigma _x}{\sigma _y} + {C_2}}}{{\sigma _x^2 + \sigma _y^2{\rm{ + }}{C_2}}}$$

    采用$\left( {\frac{{{\mu _i} - {\mu _x}}}{{{\sigma _x}}},\frac{{{y_i} - {\mu _y}}}{{{\sigma _y}}}} \right)$来计算结构相似度s(x, y),定义为:

    $$s(x,y) = \frac{{2{\sigma _{xy}} + {C_3}}}{{{\sigma _x} + {\sigma _y} + {C_3}}}$$

    式中:σxy为参考图像信号x和失真图像信号y的相关系数,计算为:

    $${\sigma _{xy}} = \frac{1}{{N - 1}}\sum\limits_{i = 1}^N {\left( {{x_i} - {\mu _x}} \right)\left( {{y_i} - {\mu _y}} \right)} $$

    上述公式中的C1C2C3为引入常数,避免μx2+μy2σx2+σy2值接近0时引起公式无意义。

    在实际操作过程中,通常引入参数α, β, γ>0调整亮度、对比度和结构性信息的权重,确定较为合适的SSIM值,定义如下:

    SSIM=[l(x, y)]α[c(x, y)]β[s(x, y)]γ

    在评价被测图像质量时,SSIM算法用一定尺寸的窗口沿图像逐像素地从左上角到右下角移动,每次计算两幅图像中窗口对应子图像的SSIM值。得到的所有子图像的SSIM值的平均即为该待测图像相较于模板图像的相似度,记为MSIMM(X, Y)表示为:

    $${\rm{MSIMM}}(X,Y) = \sum\limits_{j = 1}^M {{\rm{SSIM}}\left( {{X_j},{Y_j}} \right)} $$

    式中:M为子图像块的数量。

    异常诊断软件主要根据SSIM算法计算得到的待测图像与模板图像的相似度判定待测设备是否出现故障。软件运行情况如图 2,诊断流程主要包括:确定模板图像、选定相似度判决阈值、SSIM算法计算相似度、实时检测筛选异常图像并对异常信息做出警告与记录。其主要步骤如下:

    图  2  软件运行界面
    Figure  2.  Interface of the fault diagnosis software

    1)确定模板图像:对于直视型微光装备可靠性试验而言,通常在一个大的、较为黑暗条件下的工房中或晚上照度较小的野外进行。SSIM算法需提前确定好模板图像,即提前将直视型微光装备的视场固定。模板图像作为判定被试装备异常的基础,在选取过程中需严格控制相关外部条件。在视场中心放置一个特征明显、占据直视型微光装备目镜视场1/3~2/3视场的物体,同时控制现场外部光线不出现明显变化,保证直视型微光装备空间位置不变,点击软件拍照功能,存储为模板;

    2)相似度判决阈值确定:正式试验前,录制一段被试品目镜视场的视频,期间通过人为开关机操作和遮挡目镜镜头等方式模拟故障,将视频逐帧图像与选定的模板进行比较,得到系列相似度值,将其与故障现象对照,确定出故障出现的最大相似度值,进而作为相似度判决阈值;

    3)对于筛选出的异常图像,需发出警告信息并记录序号和时间信息,与图像一起存入告警文件夹。

    本文基于MATLAB GUI设计开发直视型微光装备可靠性自动诊断软件,界面如图 2所示。

    根据1.2的描述选择图像采集设备,按照图 3所示的方式通过转接环连接图像采集设备与直视型微光装备目镜。被试微光夜视仪开机,通过相机参数调节,使拍摄到的图像满足观察和软件处理需求。本文实践中依据测试实际情况设置相机采样频率为1 Hz。

    图  3  图像采集设备与被测设备连接图
    Figure  3.  Connection diagram of image acquisition device and equipment under test

    设置模板图像为设备正常工作时相机传回的监视图像,如图 4

    图  4  模板图像
    Figure  4.  Template image

    直视型微光装备可靠性试验主要检测一定工作时间内装备是否正常工作,可能出现的故障有:设备非正常关机、图像质量非正常变化等[3, 13]。故障发生时,监视器中的图像主要表现为:视场出现黑斑、十字刻度消失、黑屏。

    采集过程中,通过人为开关机操作和遮挡被试品目镜镜头等方式模拟微光夜视仪可靠性试验过程中出现故障的情况,可覆盖故障时视场变化情况。共获得93幅图像,其中故障图像15幅,如图 5(下标为对应图像在模拟试验获取的图像序列中的编号),构成本文装备可靠性试验工作图像数据集。

    图  5  故障模拟图像
    Figure  5.  Fault simulation images

    利用SSIM算法进行图像相似度计算,采集的监视图像与模板图像相似度计算结果如图 6所示;根据图像序号挑选出相似度小于设定阈值(根据SSIM分布特征和历史经验数据提前确定,本文取0.5)的图像,用“*”表示,这些图像正是数据集中模拟所得的故障图像。故障检测率达到100%且未出现虚警。

    图  6  相似度计算结果
    Figure  6.  Results of similarity calculation

    该试验证明,通过合理地设置相似度阈值,SSIM算法能够准确地诊断出可靠性试验过程中,被试装备图像的异常情况。

    直视型微光装备的可靠性试验一般在暗室条件下进行。由于装备对环境照度变化十分敏感,需要保持室内环境照度相对稳定。实际试验中,物体移动、光源发生变化等都会引起室内环境照度不同程度变化[14-15]图 7(a)显示了某次试验中模拟人员走动、开关门和使用手机时暗室环境的照度变化曲线,图 7(b)展示了采集的对应图像与模板图像的SSIM值。其中,用“*”标记的点为与模板图像相似度小于0.5的图像。可以看到,微小的照度变化引起了被试品图像的显著变化。图 8(下标为对应图像在模拟试验获取的图像序列中的编号)展示了部分相似度小于0.5也被错误识别为异常的图像。

    图  7  环境照度变化对相似度计算结果的影响
    Figure  7.  Influence of environmental illumination changes on the results of similarity calculation
    图  8  因环境照度变化时被误识别为故障的图片
    Figure  8.  Images misidentified as malfunction due to changes in environmental illuminance

    可见,室内照度变化会显著影响SSIM算法图像诊断的准确性。在实际可靠性试验过程中,应该尽可能保证室内照度的稳定,从而提高算法诊断的准确性。

    本文针对传统的直视型微光装备可靠性试验故障诊断中的不足,讨论了一种基于机器视觉的自动故障诊断方法。该方法通过设计转接环连接工业相机与被试装备目镜,自动采集传输监视图像,采用SSIM算法计算测试图像与模板的相似度从而判断设备是否发生异常。实践表明该方法很好地符合了人工视觉观察判断的结果,可为实现装备可靠性自动故障检测提供有力支撑,同时指出试验环境照度变化对试验结果的显著影响。

  • 图  1   多尺度融合处理结构

    Figure  1.   Processing structure of multi-scale fusion

    图  2   TA机制原理

    Figure  2.   Principle of TA mechanism

    图  3   DIOU_NMS损失函数

    Figure  3.   Loss function of DIOU_NMS

    图  4   多种电力设备的可见光图像

    Figure  4.   Visible light images of various electrical equipment

    图  5   不同算法的识别结果

    Figure  5.   Recognition results of different algorithms

    表  1   环境要求

    Table  1   Environment configuration

    Item Configuration
    OS Windows 11
    CPU Intel Xeon Silver 4114T 12C
    GPU NVIDIA GTX1080Ti
    RAM 64 GB
    Deep learning framework PyTorch 1.8
    Hard disk 1T
    下载: 导出CSV

    表  2   不同改进方法的识别效果

    Table  2   Recognition effect of different improvement methods

    Power equipment Method 1 Method 2 Ours
    Insulator AP 0.85 0.87 0.95
    Arrester AP 0.86 0.89 0.98
    CT AP 0.89 0.97 0.99
    PT AP 0.87 0.96 0.98
    Transformer bushing AP 0.89 0.92 0.97
    mAP 0.87 0.92 0.97
    recognition time /ms 27 7.8 5.6
    下载: 导出CSV

    表  3   不同识别算法的效果

    Table  3   Effects of different recognition algorithms

    Methods mAP mRC Recognition
    time/ms
    Ours 0.95 0.97 5.8
    SSD 0.85 0.88 32
    Faster R-CNN 0.91 0.93 78
    下载: 导出CSV

    表  4   不同方法的参数量与模型大小

    Table  4   Number of parameters and model size of different methods

    Methods mAP@0.5 mAP@0.8 Parameter quantity /M FLOPs/G size/MB
    Ours 0.97 0.92 0.18 4.2 4.1
    YOLO v5s 0.92 0.87 1.32 30.1 29
    YOLO v4 0.94 0.83 9.83 323.9 257
    Faster R-CNN 0.92 0.81 5.89 145.9 113
    SSD 0.86 0.82 0.99 23.8 21.4
    下载: 导出CSV
  • [1] 陈俊佑, 金立军, 段绍辉, 等. 基于Hu不变矩的红外图像电力设备识别[J]. 机电工程, 2013, 30(1): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JDGC201301003.htm

    CHEN Junyou, JIN Lijun, DUAN Shaohui, et al. Power equipment identification in infrared image based on Hu invariant moments[J]. Journal of Mechanical & Electrical Engineering, 2013, 30(1): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JDGC201301003.htm

    [2] 邹辉, 黄福珍. 基于改进Fast-Match算法的电力设备红外图像多目标定位[J]. 中国电机工程学报, 2017, 37(2): 591-598. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201702027.htm

    ZOU Hui, HUANG Fuzhen. Multi-target localization for infrared images of electrical equipment based on improved fast-match algorithm[J]. Proceedings of the CSEE, 2017, 37(2): 591-598. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201702027.htm

    [3] 郑含博, 李金恒, 刘洋, 等. 基于改进YOLOv3的电力设备红外目标检测模型[J]. 电工技术学报, 2021, 36(7): 1389-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202107009.htm

    ZHENG Hanbo, LI Jinheng, LIU Yang, et al. Infrared target detection model for power equipment based on improved YOLO v3[J]. Electrotechnical Technology, 2021, 36(7): 1389-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202107009.htm

    [4] 徐奇伟, 黄宏, 张雪锋, 等. 基于改进区域全卷积网络的高压引线接头红外图像特征分析的在线故障诊断方法[J]. 电工技术学报, 2021, 36(7): 1380-1388. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202107008.htm

    XU Qiwei, HUANG Hong, ZHANG Xuefeng, et al. On-line fault diagnosis method based on infrared image feature analysis of high-voltage lead connector based on improved area full convolutional network[J]. Transactions of the Chinese Society of Electrical Engineering, 2021, 36(7): 1380-1388. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202107008.htm

    [5] 罗舜. 电力变压器套管将军帽发热故障的红外诊断分析[J]. 变压器, 2018, 55(1): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-BYQZ201801018.htm

    LUO Shun. Infrared diagnosis analysis of power transformer bushing coupler heating[J]. Transformer, 2018, 55(1): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-BYQZ201801018.htm

    [6] 张杰, 付泉泳, 袁野. 变压器局部放电带电检测技术应用研究[J]. 变压器, 2018, 55(8): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-BYQZ201905024.htm

    ZHANG Jie, FU Quanyong, YUAN Ye. Application research of electric detection technology of partial discharge for transformer[J]. Transformer, 2018, 55(8): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-BYQZ201905024.htm

    [7] 吕俊, 王福田, 汤进, 等. 基于全景温度场的电力设备在线自动识别与诊断[J]. 计算机与现代化, 2015(8): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JYXH201508004.htm

    LV Jun, WANG Futian, TANG Jin, et al. Online automatic recognition and diagnosis of electrical devices via thermal panorama[J]. Computer and Modernization, 2015(8): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JYXH201508004.htm

    [8] 商俊平, 李储欣, 陈亮. 基于视觉的绝缘子定位与自爆缺陷检测[J]. 电子测量与仪器学报, 2017, 31(6): 844-849. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY201706007.htm

    SHANG Junping, LI Chuxin, CHEN Liang. Location and detection for self-explode insulator based on vision[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(6): 844-849. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY201706007.htm

    [9] 周可慧, 廖志伟, 肖异瑶, 等. 基于改进CNN的电力设备红外图像分类模型构建研究[J]. 红外技术, 2019, 41(11): 1033-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201911007.htm

    ZHOU Kehui, LIAO Zhiwei, XIAO Yiyao, et al. Construction of infrared image classification model for power equipments based on improved CNN[J]. Infrared Technology, 2019, 41(11): 1033-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201911007.htm

    [10] 赵乐, 王先培, 姚鸿泰, 等. 基于可见光航拍图像的电力线提取算法综述[J]. 电网技术: 2021, 45(4): 1536-1546. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS202104035.htm

    ZHAO Le, WANG Xianpei, YAO Hongtai, et al. Summary of power line extraction algorithms based on visible light aerial images[J]. Power System Technology: 2021, 45(4): 1536-1546. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS202104035.htm

    [11] 史晋涛, 李喆, 顾超越, 等. 基于样本扩充的Faster R-CNN电网异物监测技术[J]. 电网技术, 2020, 44(1): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS202001005.htm

    SHI Jintao, LI Zhe, GU Chaoyue, et al. Faster R-CNN power grid foreign body monitoring technology based on sample expansion[J]. Power System Technology, 2020, 44(1): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS202001005.htm

    [12] 乔林, 孙宝华, 徐立波, 等. 多特征联合稀疏表示的电力设备图像识别方法[J]. 自动化技术与应用, 2020, 39(11): 120-123. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHJ202011026.htm

    QIAO Lin, SUN Baohua, XU Libo, et al. Power equipment image recognition method based on multi-feature joint sparse representation[J]. Automation Technology and Application, 2020, 39(11): 120-123. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHJ202011026.htm

    [13] 李文璞, 谢可, 廖逍, 等. 基于Faster RCNN变电设备红外图像缺陷识别方法[J]. 南方电网技术, 2019, 13(12): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-NFDW202110012.htm

    LI Wenpu, XIE Ke, LIAO Xiao, et al. Based on faster RCNN substation equipment infrared image defect recognition method[J]. Southern Power Grid Technology, 2019, 13(12): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-NFDW202110012.htm

    [14] 杨光俊. 卷积神经网络在电力设备红外图像识别中的应用研究[D]. 广州: 华南理工大学, 2019.

    YANG Guangjun. Research on the Application of Convolutional Neural Network in Infrared Image Recognition of Power Equipment[D]. Guangzhou: South China University of Technology, 2019.

    [15] 付强, 姚建刚, 李唐兵, 等. 基于红外图像的绝缘子串钢帽和盘面区域自动提取方法[J]. 红外技术, 2016, 38(11): 969-974. http://hwjs.nvir.cn/cn/article/id/hwjs201611011

    FU Qiang, YAO Jiangang, LI Tangbing, et al. Automatic extraction method of steel cap and disk area of insulator string based on infrared image[J]. Infrared Technology, 2016, 38(11): 969-974. http://hwjs.nvir.cn/cn/article/id/hwjs201611011

    [16] 马鹏, 樊艳芳. 基于深度迁移学习的小样本智能变电站电力设备部件检测[J]. 电网技术, 2020, 44(3): 1148-1159. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS202003041.htm

    MA Peng, FAN Yanfang. Small sample smart substation power equipment component detection based on deep transfer learning[J]. Power System Technology, 2020, 44(3): 1148-1159. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS202003041.htm

    [17]

    Tianchi J, LI Qiang, MAOSONG L, et al. Target detection method combining inverted residual block and YOLO v3[J]. Transducer and Microsystem Technologies, 2019, 36(11): 56-61.

    [18] 王昕, 赵飞, 蒋佐富, 等. 迁移学习和卷积神经网络电力设备图像识别方法[J]. 中国测试, 2020, 46(5): 108-113. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202005018.htm

    WANG Xin, ZHAO Fei, JIANG Zuofu, et al. Transfer learning and convolutional neural network power equipment image recognition method[J]. China Test, 2020, 46(5): 108-113. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202005018.htm

    [19]

    WU D, LV S, JIANG M, et al. Using channel pruning-based YOLOv4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments[J]. Computers and Electronics in Agriculture, 2020, 178(5): 174-178.

    [20]

    Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM: visual explanations from deep networks via gradient based localization[C]//2017 IEEE International Conference on Computer Vision, 2017: 102-105.

  • 期刊类型引用(4)

    1. 李星军,邵志伟,梁嘉怡. 基于Roberts算子的激光夜视图像自动分割方法. 激光杂志. 2024(05): 110-114 . 百度学术
    2. 杨锋,赵维骏,顾燕,董隽媛,吕扬,李海生,郭一亮,朱波. 基于细节显著性估计的低照度图像增强方法. 红外技术. 2024(10): 1145-1153 . 本站查看
    3. 唐冬来,李玉,杨梅,付世峻,杨俏,叶鸿飞. 基于卷积神经网络的电缆接头缺陷识别方法. 电子设计工程. 2023(12): 33-37 . 百度学术
    4. 杨锋,赵维骏,顾燕,朱波,吕扬,焦国力,闵超波. 基于正则化高斯场模型的低光图像增强. 激光与红外. 2023(10): 1586-1592 . 百度学术

    其他类型引用(0)

图(5)  /  表(4)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  20
  • PDF下载量:  42
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-03-29
  • 修回日期:  2022-04-25
  • 网络出版日期:  2024-06-23
  • 刊出日期:  2024-06-19

目录

/

返回文章
返回