甚长波红外焦平面超大电荷容量数字读出电路技术

Ultra-Large-Charge-Capacity Digital ROIC Technology for Very-Long-Wavelength IRFPAs

  • 摘要: 甚长波红外探测器在红外成像系统、光谱探测和深空探测等中有着重要应用。相比于中波和长波探测器,甚长波红外探测器的光电流和暗电流明显增加,探测器的偏置电压更加离散和敏感,本文采用数字积分技术和多电源域技术,解决了甚长波探测器的温度灵敏度受到积分时间限制和宽偏置电压范围要求等问题。采用0.13 μm的CMOS工艺,设计并流片加工了面阵规格分别为320×256(像元中心间距为30 μm)和640×512(像元中心间距为25 μm)的两款数字读出电路,ADC位数为16 bit,电荷容量达到11.8 Ge,探测器偏置电压范围扩展到2.2 V,经测试,两款电路的功耗分别为53.1 mW和149.6 mW(@100 Hz帧频)。耦合了320×256和640×512甚长波碲镉汞红外探测器,半阱条件下,NETD分别达到8.01 mK和9.29 mK,积分时间10 ms时,动态范围达到90 dB以上。本文的数字积分读出电路与传统模拟积分读出电路相比,显著地扩展了电荷容量,延长了甚长波探测器的积分时间,有效提升了温度灵敏度和动态范围。

     

    Abstract: Very-long-wavelength infrared (VLWIR) detectors have important applications in infrared imaging systems, spectral detection, and deep space exploration. Compared with medium-wavelength (MW) and long-wavelength (LW) IR detectors, VLWIR detectors exhibit significantly higher photocurrent and dark current, and their bias voltage becomes more discrete and sensitive. This study employs digital integration technology and multi-power-domain technologies to address the challenges of temperature sensitivity constrained by integration time and the wide bias voltage range required for VLWIR detectors. Based on a standard CMOS 0.13 μm process, a digital readout integrated circuit (DROIC) with a 320 × 256 array (30-μm pitch) and a 640 × 512 array (30-μm pitch) was designed and fabricated. In both DROICs, the pixel-level ADC is 16-bit, the charge capacity reaches 11.8Ge-, and the detector bias voltage range is extended to 2.2 V. Measurement results show that the power consumption is 53.1 and 149.6 mW (@100 Hz frame rate), respectively. Coupled with 320 × 256 and 640 × 512 VLWIR detectors, the average noise equivalent temperature difference (NETD) is 8.01 and 9.29 mK (half-well capacity), respectively. When the integration time is less than 10 ms, the dynamic range (DR) exceeds 90 dB. Compared with traditional readout integrated circuit, DROIC significantly expands the charge capacity, prolongs the integration time of VLWIR detectors, and effectively improves temperature sensitivity and dynamic range.

     

/

返回文章
返回