A New Ion Barrier Film for Micro-channel Plates
-
摘要:
传统技术制备的MCP防离子反馈膜在一定程度上会影响像管的信噪比,长时间的工作条件下也会降低像管的可靠性,基于传统防离子反馈膜缺陷导致的像管信噪比和可靠性性能亟需改善和提高的迫切需求,开展一种用于MCP的新型防离子反馈膜研究。采用原子层沉积技术(Atomic Layer Deposition, ALD)在有较高长径比的MCP通道内壁及输入端的通道孔处制备一层连续的高质量U型结构的防离子反馈膜,经MCP综合检测装置测试,与传统技术制备的MCP部件性能相比,新型防离子反馈膜致密,增益值较高,部件含碳量低,新型防离子反馈膜的MCP部件经制管后像管信噪比高,寿命可靠性高,此技术制备的新型防离子反馈MCP部件对与像增强器信噪比和可靠性性能的提升具有重要意义。
Abstract:The microchannel plate (MCP) ion barrier film produced by traditional technology affects the signal-to-noise ratio (SNR) of the image tube to a certain extent, and long-term working conditions reduce the reliability of the image tube. Due to the urgent need to improve and enhance the SNR and reliability of image tubes caused by defects in traditional ion barrier films, a new type of ion barrier film for MCP must be developed. In this study, a continuous high-quality U-shaped ion barrier film was prepared using atomic layer deposition on the inner wall of MCP channels with high aspect ratios and channel holes at the input end. The film quality and electrical performance were tested using an MCP comprehensive detection device and compared with the performance of MCP components prepared by traditional technology. The new ion barrier film is dense, with high gain values and low carbon content in the components. The new MCP components exhibit a high SNR and high lifespan reliability after tube preparation. New MCP components produced using this technology are of great significance for improving the SNR and reliability of image intensifiers.
-
-
表 1 不同ALD参数下MCP部件性能比较
Table 1 Performance comparison of MCP components with different ALD parameters
Sample Sample quantity Reaction temperature/℃ Number of cycles Average dead zone voltage/V 1 4 T1 C1 396 2 4 T2 C1 435 3 4 T3 C1 488 4 4 T4 C1 Negative value Note:T1<T2<T3<T4 表 2 Al2O3薄膜制备工艺参数
Table 2 Parameters of Al2O3 film preparation
Sample Sample quantity Reaction temperature/℃ Number of cycles Average growth rate of
thin film Å/CAverage dead zone voltage/V 1 3 T1 C4 3.83 267 2 3 C3 3.86 291 3 3 C2 3.63 320 4 3 T2 C4 3.17 284 5 3 C3 3.00 313 6 3 C2 3.00 339 7 3 T3 C4 2.50 307 8 3 C3 2.57 332 9 3 C2 2.50 368 表 3 MCP部件增益性能检测
Table 3 Gain performance testing of MCP components
Sample New MCP components Sample Traditional MCP components Resistor/MΩ Gain Resistor/MΩ Gain 1 186 6001 1´ 146 4408 2 184 5989 2´ 157 4609 3 179 6231 3´ 162 5200 4 182 6879 4´ 154 4699 5 169 6496 5´ 178 4863 6 168 6104 6´ 164 4613 7 182 7302 7´ 159 5019 8 159 7029 8´ 186 4987 9 173 7456 9´ 180 4639 10 184 6981 10´ 192 4966 表 4 SEM测试MCP输出面原子百分比
Table 4 Test percentage on MCP output surfacetested by SEM
Element Quality percentage/% Atomic percentage/% C 3.46 8.81 O 25.07 47.91 Ni 0 0 Na 0 0 Al 0 0 Si 3.93 4.28 Pb 1.57 0.23 Bi 0.01 0 K 0 0 Ba 0 0 Cr 65.95 38.77 表 5 SEM测试MCP输入面原子百分比
Table 5 Test percentage on MCP input surface tested by SEM
element Quality percentage/% Atomic percentage/% C 2.84 9.76 O 8.3 21.4 Ni 0.17 0.12 Na 0.02 0.03 Si 2.87 4.21 Pb 4.14 0.82 Bi 0.16 0.03 Pd 0.09 0.03 K 0.43 0.45 Ba 2.19 0.66 Cr 78.78 62.48 -
[1] 向世明, 倪国强. 光电子成像器件原理[M]. 北京: 国防工业出版社, 2006: 270-275. XIANG Shiming, NI Guoqiang. The Principle of Photoelectronic Imaging Devices[M]. Beijing: National Defense Industry Press, 2006: 270-275.
[2] Pollehn H K. Performance and reliability of third generation image intensifier[J]. Advance in Electronics and Electron Physics, 1985, 64A(1): 57-61.
[3] 闫金良, 赵银女, 朱长纯. 无碳污染微通道板电子透射膜[J]. 电子学报, 2000, 28(8): 100-101. YAN Jinliang, ZHAO Yinnv, ZHU Changchun. Electron transmission film of carbon free MCP[J]. Acta Electronica Sinica, 2000, 28(8): 100-101.
[4] 高秀敏, 蔡春平. 微通道板玻璃的二次电子发射系数[J]. 应用光学, 1998, 4: 9-17. GAO Xiumin, CAI Chunping. Secondary electron emissioncoefficient of MCP glass[J]. Journal of Applied Optics, 1998, 4: 9-17.
[5] 刘术林, 邓广绪, 严诚, 等. MCP增益与首次碰撞时电子能量关系的试验研究[J]. 红外技术, 2011, 33(6): 354-356. DOI: 10.3969/j.issn.1001-8891.2011.06.010 LIU Shulin, DENG Guangxu, YAN Cheng, et al. Experimentresearch on relation between MCP gain and electron energywhile first collision[J]. Infrared Technology, 2011, 33(6): 354-356. DOI: 10.3969/j.issn.1001-8891.2011.06.010
[6] 丛晓庆, 邱祥彪, 孙建宁, 等. 原子层沉积法制备微通道板发射层的性能[J]. 红外与激光工程, 2016, 45(9): 101-106. CONG Xiaoqing, QIU Xiangbiao, SUN Jianning, et al. Properties of micro-channel plate emission layer deposited by atomic layer deposition[J]. Infrared and Laser Engineering, 2016, 45(9): 101-106.
[7] Ritala M, Kukli K, Rahtu A, et al. Atomic layer depositionof oxide thin films with metal alkoxides as oxygen sources[J]. Science, 2000, 288(5464): 319-321.
[8] Gordon R G, Hausmann D, Kim E, et al. A kinetic modelfor step coverage by atomic Layer deposition in narrowholes or trenches[J]. Chemical Vapor Deposition, 2003, 9(2): 73-78.
[9] Kucheyev S O, Biener J, Baumann T F, et al. Mechanismsof atomic layer deposition on substrates with ultrahigh aspectratios[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2008, 24(3): 943-948.
[10] SHANG Shuzhen, LIAO Chunyan, YI Kui, et al. Experimentalstudy of annealing effect s on electron-beam evaporated Al2O3films[J]. High Power Laser & Particle Beams, 2005, 11(4): 511-514.
[11] 沈伟东, 刘旭, 叶辉, 等. 确定薄膜厚度和光学常数的一种新方法[J]. 光学学报, 2004, 24(7): 885-888. SHEN Weidong, LIU Xu, YE Hui, et al. A new method for determination of the optical const ant sand thickness of thin film[J]. Acta Optica Sinica, 2004, 24(7): 885-888.