An Infrared Micro Scanner Measurement and Calibration Method Based on Image Processing
-
摘要: 在以红外焦平面为核心的红外成像系统中,微扫描器件可以有效提高整个系统的空间分辨率。针对微扫描器件的检测,本文提出了一种基于图像处理的测量与校准方法,并搭建了一套检测系统用于对微扫描器件进行检测与校准。以某型微扫描器件为测试对象,实验结果表明本文所提方法在测量精度、重复精度以及不确定度方面均达到了良好的效果,可以为微扫描器件的设计、生产提供基础支撑。Abstract: In infrared imaging systems, in which the core is an infrared focal plane array, a microscanner can enhance the spatial resolution of the entire system. To test microscanners, this study developed a measurement and calibration method based on image processing and built a system to measure and calibrate microscanners. Using a microscanner as a test subject, the test results indicate that the proposed method has a significant effect on the measurement accuracy, repetition accuracy, and uncertainty. The method can provide technical support for the design and manufacture of microscanners.
-
Keywords:
- infrared focal plane array /
- micro scanner /
- measurement method /
- image processing
-
-
表 1 数学模型参数p计算结果
Table 1 Calculation results of parameter p
No. The X direction displacement (pixel) The Y direction displacement (pixel) The piezo positioner displacement/μm 1 -0.002 -0.004 0 2 0.621 0.639 5 3 1.398 2.206 10 4 2.875 3.327 15 5 3.655 4.573 20 6 5.111 5.878 25 7 6.474 6.993 30 8 7.533 8.109 35 9 8.661 9.221 40 10 9.81 10.321 45 11 10.616 11.579 50 12 12.042 12.871 55 The parameter p of the X direction: 0.2260 pixel/μm,
the parameter p of the Y direction: 0.2364 pixel/μm表 2 某型微扫描器件的测试结果
Table 2 The test results of a micro scanner
The design displacement No. X direction displacement test Y direction displacement test Real value Difference Real value Difference 12.5 μm 1 12.573 0.073 12.089 -0.411 2 12.303 -0.197 12.221 -0.279 3 12.567 0.067 12.121 -0.379 4 12.485 -0.015 12.231 -0.269 5 12.506 0.006 12.075 -0.425 6 12.504 0.004 12.053 -0.447 7 12.576 0.076 12.231 -0.269 8 12.208 -0.292 12.221 -0.279 9 12.507 0.007 12.113 -0.387 10 12.510 0.01 12.113 -0.387 11 12.450 -0.05 12.072 -0.428 12 12.372 -0.128 12.157 -0.343 13 12.451 -0.049 12.174 -0.326 14 12.455 -0.045 12.178 -0.322 15 12.448 -0.052 12.173 -0.327 16 12.498 -0.002 12.149 -0.351 17 12.486 -0.014 12.083 -0.417 18 12.366 -0.134 12.078 -0.422 19 12.454 -0.046 12.158 -0.342 20 12.457 -0.043 12.133 -0.367 Mean 12.4588 -0.0412 12.1412 -0.3589 表 3 本文实验不确定度汇总
Table 3 The summary of the test uncertainty in this paper
Uncertainty component Ui Uncertainty source Uncertainty Sensitivity coefficient ci $ \left| {{c_i}} \right| \cdot {U_i} $ U(m) of the X direction The repeat test of the X direction 0.02014 μm c1=4.425 0.08912 μm U(m) of the Y direction The repeat test of the Y direction 0.01278 μm c1=4.230 0.05406 μm U(m1) of the X direction The error of the piezo positioner at the X direction -0.0041 μm c2=2.791 -0.01144 μm U(m1) of the Y direction The error of the piezo positioner at the Y direction -0.0045 μm c2=2.699 -0.01215 μm The synthetic uncertainty of the X direction: 0.08985 μm; The expand uncertainty of the X direction: 0.17970 μm
The synthetic uncertainty of the Y direction:0.05541 μm; The expand uncertainty of the Y direction: 0.11082 μm -
[1] Bagavathiappan S, Lahiri B B, Saravanan T, et al. Infrared thermography for condition monitoring–a review[J]. Infrared Physics & Technology, 2013, 60: 35-55.
[2] Kogure S, Inoue K, Ohmori T, et al. Infrared imaging of an A549 cultured cell by a vibrational sum-frequency generation detected infrared super resolution microscope[J]. Optics Express, 2010, 18(13): 13402-13406. DOI: 10.1364/OE.18.013402
[3] Lanfrey D B, Trinolet P, Pistone F, et al. New IR detectors with small pixel pitch and high operating temperature[C]//Proc. of SPIE, 2010, 7854: 78540M.
[4] 吕侃, 王世勇. 超分辨率技术在红外微扫描中的应用[J]. 电子设计工程, 2011, 19(13): 166-169. DOI: 10.3969/j.issn.1674-6236.2011.13.050 LV Kan, WANG Shiyong. Application of super-resolution techniques in infrared micro-scanning[J]. Electronic Design Engineering, 2011, 19(13): 166-169. DOI: 10.3969/j.issn.1674-6236.2011.13.050
[5] 张良, 仇振安, 杨小儒, 等. 红外系统微扫描技术研究[J]. 激光与光电子学进展, 2012, 49(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201204024.htm ZHANG Liang, QIU Zhen'an, YANG Xiaoru, et al. Research of infrared micro-scanning technology[J]. Laser & Optoelectronics Progress, 2012, 49(4): 042302 https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201204024.htm
[6] 吴新社, 邓芳轶, 陈敏, 等. 旋转式红外微扫描器研制[J]. 红外与毫米波学报, 2011, 30(3): 263-267. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201103017.htm WU Xinshe, DENG Fangyi, CHEN Min, et al. Development of rotary infrared micro-scanner[J]. Journal of Infrared and Millimeter Waves, 2011, 30(3): 263-267. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201103017.htm
[7] 王学伟, 李珂, 王世立. 红外成像系统微扫描成像重建算法研究[J]. 光电工程, 2012, 39(12): 122-126. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201212023.htm WANG Xuewei, LI Ke, WANG Shili. Microscanning reconstruction algorithm for IR imaging system[J]. Opto-Electronic Engineering, 2012, 39(12): 122-126. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201212023.htm
[8] 代少升, 张德州, 崔俊杰, 等. 基于微扫描的红外超分辨率成像系统的设计[J]. 半导体光电, 2017, 38(1): 103-106, 112. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201701026.htm DAI Shaosheng, ZHANG Dezhou, CUI Junjie, et al. Design of infrared super-resolution imaging system based on micro-scanning[J]. Semiconductor Optoelectronics, 2017, 38(1): 103-106, 112. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201701026.htm
[9] 黄燕, 沈飞, 黄整章, 等. 压电式高精度位移微扫描控制系统设计[J]. 光学精密工程, 2016, 24(10s): 454-460. HUANG Yan, SHEN Fei, HUANG Zhengzhang, et al. Micro-scanning control system design for piezoelectric high-precision displacement[J]. Editorial Office of Optics and Precision Engineering, 2016, 24(10s): 454-460.
[10] 王忆锋, 侯辉, 冯雪艳. 红外焦平面器件微扫描技术的发展[J]. 红外技术, 2013, 35(12): 751-758. http://hwjs.nvir.cn/article/id/hwjs201312002 WANG Yifeng, HOU Hui, FENG Xueyan, Development of microscan techniques in infrared focal plane array[J]. Infrared Technology, 2013, 35(12): 751-758. http://hwjs.nvir.cn/article/id/hwjs201312002
[11] 王林波, 王延杰, 邸男, 等. 基于几何特征的圆形标志点亚像素中心定位[J]. 液晶与显示, 2014, 29(6): 1003-1009. https://www.cnki.com.cn/Article/CJFDTOTAL-YJYS201406024.htm WANG Linbo, WANG Yanjie, DI Nan, et al. Subpixel location of circle target center based on geometric features[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(6): 1003-1009. https://www.cnki.com.cn/Article/CJFDTOTAL-YJYS201406024.htm
[12] 梁智滨, 吴鹏飞, 李灵巧, 等. 基于改进Zernike矩和均值漂移的插针位置检测方法[J]. 桂林电子科技大学学报, 2021, 41(4): 305-311. https://www.cnki.com.cn/Article/CJFDTOTAL-GLDZ202104008.htm LIANG Zhibin, WU Pengfei, LI Lingqiao, et al. Pin position detection based on improved Zernike moment and mean shift[J]. Journal of Guilin University of Electronic Technology, 2021, 41(4): 305-311. https://www.cnki.com.cn/Article/CJFDTOTAL-GLDZ202104008.htm
[13] 田光宝, 王见, 王博文. 单目相机非合作目标提取及位姿检测[J]. 红外与激光工程, 2021, 50(12): 20210166. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202112050.htm TIAN Guangbao, WANG Jian, WANG Bowen. Monocular camera non-cooperative target extraction and pose detection[J]. Infrared and Laser Engineering, 2021, 50(12): 20210166. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202112050.htm
[14] Ghosal S, Mecrotra R. Orthogonal moment operator for subpixel edge detection[J]. Pattern Recognition, 1993, 26(2): 295-306.
[15] 卢达, 白静芬, 林繁涛, 等. 基于映射常数的动态量值不确定度评定方法[J]. 电测与仪表, 2022, 59(6): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ202206008.htm LU Da, BAI Jingfen, LIN Fantao, et al. Evaluation of uncertainty for dynamic values based on mapping constants[J]. Electrical Measurement & Instrumentation, 2022, 59(6): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ202206008.htm
[16] 中国国家标准化管理委员会. 测量不确定度评定和表示: GB/T 27418-2017[S]. 北京: 中国标准出版社, 2018. Standard Administration. Guide to Evaluation and Expression of Uncertainty in Measurement: GB/T 27418-2017[S]. Beijing: Standards Press of China, 2018.