Research Progress in the Metal Oxide Heterojunction Photodetectors
-
摘要: 金属氧化物(metal oxide,MO)因其具有易于制备、高稳定性、对载流子的选择性传输等优点,被广泛应用于光电探测领域。MO材料具有较强的光吸收,但表面效应和缺陷态等问题导致了MO光电探测器响应速度低和暗电流较大的问题。异质结中的内建电场可以有效促进光生电子-空穴对的分离,从而提升器件响应速度和降低器件暗电流。因此,构建金属氧化物异质结光电探测器(heterojunction photodetectors,HPDs),对于MO在光电子领域的进一步应用具有重要的意义。本文先介绍了MO的界面性质,然后围绕PN、PIN和同型异质结3种结构,对金属氧化物HPDs的工作机制进行了阐述。接着对响应波段在紫外-可见-近红外光区的、具有不同结构的MO/MO和MO/Si HPDs的性能参数进行了分析和比较,并讨论了金属氧化物HPDs的性能优化方法,最后对金属氧化物HPDs的发展进行了展望。Abstract: Metal oxides (MOs) have been widely used in photodetection because of advantages such as easy preparation, high stability, and selective transport of carriers. The MO materials exhibit strong light absorption properties. However, there are issues with MO photodetectors such as their low response speed and large dark current owing to the surface effects and defect states. The built-in electric field in the heterojunction can effectively promote the separation of photogenerated electron-hole pairs, thus improving the device response speed and reducing the dark current. Thus, the construction of metal oxide heterojunction photodetectors (HPDs) is of great significance for the further application of MO in the field of optoelectronics. This paper introduces the interface properties of MO and elaborates on the working mechanism of metal oxide HPDs around the PN, PIN, and isotype heterojunctions. Next, the performance parameters of MO/MO and MO/Si HPDs with different structure and response in UV-Vis-NIR band are analyzed and compared. Subsequently, improved methods of the metal oxide HPDs performances are discussed. Finally, the development of metal oxide HPDs is discussed.
-
Keywords:
- photodetector /
- metal oxide /
- silicon /
- heterojunction
-
0. 引言
区别于传统的波纹管自调形式,记忆合金型自调式制冷器采用了另外一条自调技术路线,即利用记忆材料随温度变化产生的形状记忆效应来实现制冷器流量的调节,具有结构简单、装调方便、寿命长等优点[1]。记忆合金制冷器自调后,流量会趋于稳定,但在一些因素如振动、温度变化、制冷器记忆合金的不稳定等的影响下,稳定流量可能会发生较大变化,造成制冷器不到温或工作时间缩短。关于记忆合金自调式制冷器流量稳定性的研究,学者多从提升记忆合金弹簧的疲劳稳定性和设计预紧力来维持制冷器流量的稳定[2-5],很少有学者研究节流孔大小对制冷器流量稳定性的影响。
由于焦耳汤姆逊效应存在,高压气体流经节流孔,压力明显降低,相应地温度大幅下降直至相变为液体,液态制冷工质蒸发后吸热来实现被冷却对象的制冷。
节流孔直径的设计对制冷器性能有着重要的影响:直径偏小,制冷流量也偏小,制冷量不足;直径偏大,制冷工质液化率低,制冷效率不高,且探测器工作时长会受到影响。为满足制冷量和探测器工作时长的要求,节流孔直径将被限制在一个范围内。对于对流量稳定性要求较高的自调式制冷器,考虑节流孔直径对流量稳定性的影响,可以进一步寻找到一个更佳的节流孔直径。本文对一款典型的记忆合金自调式制冷器,自调机构见图 1,对其节流孔孔径在0.10~0.25 mm之间变化时的流量稳定性进行了理论和实验研究,探讨了节流孔孔径对制冷器流量稳定性的影响[6]。
1. 理论计算
图 1是一款典型的记忆合金自调式制冷器结构,主要包括主动弹簧、形状记忆合金调节器、补偿块、平衡弹簧和阀针。制冷器通气后,高压气体先大流量流经节流孔,经节流后温度骤降,形状记忆合金弹簧被冷却收缩,主动弹簧和平衡弹簧相应地伸长,带动阀针运动关小节流孔实现流量的自动调节。
现从理论层面分析,改变节流孔孔径大小是否有助于提高自调制冷器流量稳定性。图 2为节流孔和阀针结构示意图,气流由1断面流向2断面。
为简化计算,现作两点假设:
1)气流由1断面流到2断面的沿程阻力损失忽略不计;
2)气流相变发生在2断面之后,1-2断面制冷工质保持气体状态。
现通过能量守恒来计算制冷工质流量。由于阀针阻碍导致的局部阻力损失系数为[7]:
$$\zeta {\rm{ = }}0.5\left( {1 - \frac{{{A_2}}}{{{A_1}}}} \right)$$ (1) 式中:A1、A2分别为1、2断面的过流面积。
由能量守恒知:
$${P_1} = 0.5(1 - \frac{{{A_2}}}{{{A_1}}})\frac{{\rho v_2^2}}{2} + {P_{{\rm{s2}}}} + {P_{{\rm{d2}}}}$$ (2) 式中:P1为断面1的全压;等式右侧第一项为断面1~2之间的局部压力损失,ρ为气流的密度;v2为断面2处的流速;Ps2为断面2的静压,与外界大气相通,接近于大气压,取值为0;Pd2为断面2处的动压,其表达式为:
$${P_{{\rm{d}}2}} = \frac{{\rho v_2^2}}{2}$$ (3) 流过断面2的流量为:
$$ Q = {A_2}{v_2} $$ (4) 式(2)、(3)、(4)联立:
$${P_1} = 0.5(1 - \frac{{{A_2}}}{{{A_1}}})\frac{{\rho {Q^2}}}{{2A_2^2}} + \frac{{\rho {Q^2}}}{{2A_2^2}}$$ (5) $$Q = \sqrt {\frac{{A_2^2{P_1}}}{{\frac{\rho }{2} + \frac{\rho }{4}(1 - \frac{{{A_2}}}{{{A_1}}})}}} $$ (6) 断面2面积A2可用节流孔孔径R1、阀针进入节流孔的深度l、阀针的角度α表示:
$$Q = \sqrt {\frac{{{{\left[ {{\rm{ \mathsf{ π} }}R_1^2 - {\rm{ \mathsf{ π} }}{{(l*\tan \frac{\alpha }{2})}^2}} \right]}^2}{P_1}}}{{\frac{\rho }{2} + \frac{{\rho {{(l*\tan \frac{\alpha }{2})}^2}}}{{4R_1^2}})}}} $$ (7) 由流量公式可知,影响流量的主要因素是节流孔孔径、阀针进入节流孔的距离、阀针的角度、进气压力、气流密度。
本研究通过计算制冷器流量变化量来评估不同节流孔孔径制冷器的流量稳定性。对于一种特定的自调式制冷器,其调试流量一般都会设定在某一区间,计算中控制不同直径的制冷器调试流量均相同,为14.61 g/min;设扰动因素会导致阀针进入节流孔中的距离减少0.01 mm;制冷工质为氮气,节流前密度为506.25 kg/m3;1断面处的压力为27 MPa,阀针角度为30°,计算结果如表 1和图 3所示。
表 1 节流孔孔径对流量稳定性影响算例Table 1. Example of the influence of orifice diameter on flow stabilityOrifice diameter/mm Setup flow rate/(g/min) Distance of needle into orifice at setup flow rate/mm Distance of needle into orifice after disturbance/mm Flow rate after disturbance/(g/min) Flow rate variation/(g/min) 0.10 14.61 0.1634 0.1534 21.07 6.46 0.11 14.61 0.1840 0.1740 21.80 7.19 0.12 14.61 0.2042 0.1942 22.52 7.91 0.13 14.61 0.2242 0.2142 23.23 8.62 0.14 14.61 0.2439 0.2339 23.94 9.33 0.15 14.61 0.2635 0.2535 24.65 10.04 0.16 14.61 0.2829 0.2729 25.35 10.74 0.17 14.61 0.3022 0.2922 26.05 11.44 0.18 14.61 0.3214 0.3114 26.74 12.13 0.19 14.61 0.3406 0.3306 27.44 12.83 0.20 14.61 0.3597 0.3497 28.14 13.53 0.21 14.61 0.3787 0.3687 28.83 14.22 0.22 14.61 0.3977 0.3877 29.52 14.91 0.23 14.61 0.4166 0.4066 30.22 15.61 0.24 14.61 0.4356 0.4256 30.91 16.30 0.25 14.61 0.4544 0.4444 31.60 16.99 表 1数据显示,在14.61 g/min的调试流量下,扰动因素导致阀针进入节流孔的距离减少0.01 mm时,节流孔孔径为0.25 mm的制冷器流量增加了16.99 g/min,而节流孔孔径为0.10 mm的制冷器流量增加了6.46 g/min,小于0.25 mm孔径制冷器10.53 g/min;图 3显示制冷器流量变化量随节流孔孔径增大呈线性增大趋势;说明节流孔孔径越小,制冷器流量越不容易发生变化,流量稳定性越好。
制冷器调试流量既要满足制冷量要求,又不能超差,要处于一个合理的范围内。现分析调试流量大小对流量稳定性的影响。节流孔孔径设定为0.15 mm;调试流量在14.61~23.65 g/min之间变化;干扰因素相同,均使得阀针在节流孔中的距离减少0.01 mm;计算结果见表 2和图 4。
表 2 调试流量对流量稳定性影响算例Table 2. Example of the influence of adjusting flow rate on flow stabilityOrifice diameter/mm Setup flow rate/(g/min) Distance of needle into orifice at setup flow rate/mm Distance of needle into orifice after disturbance/mm Flow rate after disturbance/(g/min) Flow rate variation/(g/min) 0.15 14.61 0.2635 0.2535 24.65 10.04 0.15 15.62 0.2625 0.2525 25.64 10.02 0.15 16.63 0.2615 0.2515 26.63 10.00 0.15 17.64 0.2605 0.2505 27.63 9.99 0.15 18.64 0.2595 0.2495 28.62 9.97 0.15 19.65 0.2585 0.2485 29.60 9.96 0.15 20.65 0.2575 0.2475 30.59 9.94 0.15 21.65 0.2565 0.2465 31.58 9.93 0.15 22.65 0.2555 0.2455 32.56 9.91 0.15 23.65 0.2545 0.2445 33.54 9.89 表 2数据显示,在14.61 g/min的调试流量下,受扰动因素影响,制冷器流量变化量为10.04 g/min,当调试流量增大至23.65 g/min时,制冷器流量变化量为9.89 g/min,流量变化量减少了0.15 g/min;图 4中显示流量变化量随调试流量的增大呈线性减少趋势。整体来看,调试流量增加,制冷器的流量变化量会减小,但减小幅度不大,而调试流量调的过大,很容易造成制冷器流量超差,增大调试流量对提高制冷器的流量稳定性的作用较为有限。
理论分析表明:减小节流孔直径有助于提高制冷器的流量稳定性,改变调试流量对制冷器流量稳定性的影响较小。
2. 实验研究
制冷器在受到自身或外界因素变化的影响下,流量会发生变化。为引入扰动因素,实验中对制冷器进行了疲劳测试和振动测试。记忆合金弹簧由于其自身材料的特点存在疲劳稳定性的问题,其低温下收缩量不稳定会影响阀针进入节流孔的距离,导致制冷器流量的变化,疲劳测试可以反映记忆合金弹簧不稳定对制冷器流量稳定性的影响;振动测试是为了模拟制冷器机动过程中受到的加速度冲击,制冷器受加速度冲击后,自调机构之间的相对位置会发生一定的变化,从而导致制冷器流量发生变化。
疲劳测试台如图 5所示,疲劳测试设备一端与气源连接,另一端连有10个接口,可同时供10只制冷器测试。用户在控制台的可视化界面中输入工作时间、停机时间及运行次数,程序根据输入参数控制气源的输送和切断。测试在恒温、恒湿的洁净间中进行,温度为22℃、湿度为46%、净化等级为10万级。测试中,通过调节减压阀,将供气压力调节至29 MPa,工作时间设为5 min,停机时间设为15 min,运行次数设为100次。在工作时间内,程序打开气源开关,向制冷器输送高压气体,气体节流制冷,记忆合金弹簧被冷却后收缩;在停机时间内,程序关闭气源开关,停止向制冷器输送高压气体,制冷器无冷量输出,记忆合金弹簧逐渐恢复至原长,在100次的运行次数下,记忆合金弹簧经历100次的疲劳变形。
振动测试台如图 6所示,功能振动功率谱密度如图 7所示。试验中,制冷器固定于制冷器装卡夹具中,振动过程中制冷器全程通气,气源压力29 MPa。振动频率为20~2000 Hz,最大功率谱密度为0.04 g2/Hz,总加速度均方根值为7.68 g,振动方向为振动台轴向,振动时间为10 min。
记忆合金自调式制冷器节流孔直径通常在0.10~0.25 mm之间。为使对比明显,应选择直径跨度较大的节流孔。考虑到0.10 mm附近的节流孔加工难度大,精度较难保证,因此选择直径为0.15 mm和0.25 mm两种节流孔用实验研究。实验中,0.15 mm和0.25 mm两种节流孔规格的制冷器各制作9只,由于将制冷器的流量调至完全相同是非常困难的,实验中将制冷器在29 MPa进行调试,调试流量保持在15~18 g/min的小区间变化。对制冷器调试后、疲劳测试后、振动后的流量进行测试,测试压力为29 MPa和22 MPa,共有6种不同的工况。所用流量计为质量流量计,如图 8所示。测得的流量数据如表 3和表 4所示。
表 3 0.15 mm节流孔制冷器流量数据Table 3. Flow rate data of cryocoolers with 0.15 mm orificeCryocooler number Setup flow rate/(g/min) Flow rate after fatigue test/(g/min) Flow rate after vibration test /(g/min) 29 MPa 22 MPa 29 MPa 22 MPa 29 MPa 22 MPa A1 17.35 14.16 15.61 11.4 16.75 15.07 A2 16.47 12.32 16.9 14.3 15.73 14.57 A3 16.5 13.25 16.18 14.6 15.89 13.87 A4 16.15 12.38 14.32 11.83 11.92 8.13 A5 16.45 13.66 17.17 15.7 18.04 15.1 A6 15.16 11.85 16.45 13.95 16.19 13.56 A7 15.84 13.35 15.04 13.11 16.07 12.9 A8 16.67 12.36 18.07 14.75 17.99 14.05 A9 15.44 13.68 15.19 13.01 16.06 15.34 表 4 0.25 mm节流孔制冷器流量数据Table 4. Flow rate data of cryocoolers with 0.25 mm orificeCryocooler number Setup flow rate/(g/min) Flow rate after fatigue test/(g/min) Flow rate after vibration test /(g/min) 29 MPa 22 MPa 29 MPa 22 MPa 29 MPa 22 MPa B1 16.63 12.33 15.1 12.1 17.13 13.56 B2 15.28 12.97 15.9 10.54 15.84 9.89 B3 17.8 14.43 17.91 11.07 18.33 12.32 B4 15.35 11.67 16.4 13.34 16.17 13.57 B5 16.92 15.3 14.31 11.61 21.42 18.87 B6 16.32 14.6 17.2 13.41 21.13 17.23 B7 17.87 15.33 16.66 14.12 16.42 13.89 B8 15.19 13.3 19.4 17.4 12.41 5.77 B9 16.77 14.62 16.77 14.62 18.04 15.46 为比较两种不同规格制冷器的流量稳定性,现将调试后流量作为基准流量,记为Q0,疲劳测试后流量和振动测试后流量记为Q1和Q2,计算制冷器的流量方差σ和方差均值$\bar \sigma $,如式(8)和式(9)所示。计算制冷器在29 MPa和22 MPa下的流量方差,结果如表 5所示。
$$\sigma = \frac{{{{({Q_1} - {Q_0})}^2} + {{({Q_2} - {Q_0})}^2}}}{2}$$ (8) $$\bar \sigma = \frac{{\sum\limits_{i = 1}^9 {{\sigma _i}} }}{9}$$ (9) 表 5 0.15 mm/0.25 mm孔径制冷器流量方差Table 5. Flow rate variance of cryocoolers with 0.15 mm and 0.25 mm orificeCryocooler number Flow rate variance under 29 MPa Flow rate variance under 22 MPa Cryocooler number Flow rate variance under 29 MPa Flow rate variance under 22 MPa A1 1.6938 4.2229 B1 1.29545 0.7829 A2 0.3662 4.4915 B2 0.349 7.69565 A3 0.2373 1.1035 B3 0.1465 7.87085 A4 10.6209 9.1825 B4 0.88745 3.19945 A5 1.5233 3.1176 B5 13.53105 13.1805 A6 1.3625 3.6671 B6 11.95525 4.1665 A7 0.3465 0.1301 B7 1.7833 1.76885 A8 1.8512 4.2841 B8 12.72625 36.75545 A9 0.2235 1.6023 B9 0.80645 0.3528 Avarage 2.6932 3.5335 Avarage 4.8311 8.4192 从方差均值来看:0.15 mm节流孔的制冷器在29 MPa和22 MPa下的流量方差分别为2.6932和3.5335,而0.25 mm节流孔的制冷器在两种压力下的方差均值分别为4.8311和8.4192,明显大于节流孔直径为0.15 mm的情况。实验结果表明:0.15 mm节流孔孔径的制冷器在29 MPa和22 MPa下的流量方差波动均较小,不容易发生较大的流量变化。
3. 结论
流量稳定性是评价自调型制冷器性能的一个重要指标。制冷器流量增大会导致工作时长缩短,流量减小会导致制冷量不足。本文从理论分析和实验研究两种方法出发,探究了节流孔孔径对记忆合金自调式制冷器的流量稳定性的影响。研究表明:在满足其他使用要求的情况下,节流孔孔径设计地越小,制冷器的流量稳定性越好。本文研究内容有助于记忆合金型自调式制冷器设计优化。
-
图 2 MO的界面特性:(a) 在MO界面上可以设计的关联电子的对称性和自由度[12];(b) 传统半导体的相图(左)和界面电子行为(右);(c)和(d)MO的相图(左)和界面电子行为(右),分别对应于产生电子形变(c)和不产生电子形变的情形(d)[13]
Figure 2. Properties of the MO interfaces: (a) The symmetries and degrees of freedom of correlated electrons that can be engineered at MO interfaces[12]; (b) Phase diagrams (left) and interface electronic behaviors (right) for conventional semiconductors; (c) and (d) Phase diagrams (left) and interface electronic behaviors (right) for MO, corresponding to the situations in which (c) and no electronic deformation is generated (d), respectively[13]
图 3 金属氧化物HPDs的载流子传输机制:(a) MO/MO和(b)MO/Si PN结HPDs的能带示意图[23-24];(c) MO/MO和(d) MO/Si PIN结HPDs能带示意图[25-26];(e) MO/MO和(f) MO/Si同型异质结HPDs能带示意图[27-28]
Figure 3. Carrier transport mechanism of metal oxide HPDs: The energy band diagrams of (a) MO/MO and (b) MO/Si PN junction HPDs[23-24]; (c) MO/MO and (d) MO/Si PIN junction HPDs[25-26]; (e) MO/MO and (f) MO/Si isotype HPDs[27-28]
图 5 薄膜型MO/MO HPDs的结构和性能:(a) n-Ga2O3/p-NiO HPD的结构[71];(b) n-Ga2O3/p-NiO HPD的瞬态响应行为[71];(c) WO3/TiO2 HPD的结构[28];(d) TiO2,WO3和WO3/TiO2 PD I-V特性[28];(e) 柔性ZnO/SrCoOx HPD的结构[40];(f) ZnO/SrCoOx HPD在不同弯曲状态下的I-T曲线[40]
Figure 5. Structures and properties of the film-based MO/MO HPDs: (a) The structure of n-Ga2O3/p-NiO HPD[71]; (b) Transient response behavior of n-Ga2O3/p-NiO HPD[71]; (c) The structure of the WO3/TiO2 HPD[28]; (d) I-V characteristic of TiO2, WO3 and WO3/TiO2 PD[28]; (e) The structure of the flexible ZnO/SrCoOx HPD[40]; (f) I-T curves of the ZnO/SrCoOx HPD in different bending states[40]
图 6 其他结构的MO/MO HPDs的性能:(a) ZnO/SnO2核壳纳米棒阵列HPD的结构[61];(b) ZnO/SnO2核壳纳米棒阵列的横截面SEM图像[61];(c) ZnO/SnO2 HPD在1 V偏压下的I-T曲线[61];(d) NiO纳米片/ZnO纳米棒阵列HPD的结构[73];(e) 零偏下的响应率在300~800 nm波长范围内的变化[73];(f) 横杆NiO/SnO2纳米纤维阵列HPD的结构[35];(g) NiO/SnO2 HPD的工作原理[35];(h) NiO/SnO2HPD在-5 V偏压下的响应率和探测率曲线[35];(i) α‑Ga2O3纳米棒阵列/Cu2O纳米球HPD的结构及其测试系统[39]
Figure 6. Properties of MO/MO HPDs with other structures: (a) The structure of ZnO/SnO2 core-shell nanorods array HPD[61]; (b) Cross-sectional SEM images of ZnO/SnO2 core-shell nanorods array[61]; (c) I-T curves of ZnO/SnO2 HPD at 1V bias[61]; (d) Structure of NiO nanosheet/ZnO nanorods array HPD[73]; (e) Wavelength-dependent responsivity at zero bias ranging from 300-800 nm[73]; (f) Structure of cross-bar NiO/SnO2 nanofiber array HPD[35]; (g) Working principle of the NiO/SnO2 HPD[35]; (h) Responsivity and detectivity curves of NiO/SnO2 HPD at -5 V bias[35]; (i) Structure and testing system of α‑Ga2O3 nanorods array/Cu2O nanosphere HPD[39]
图 7 MO/Si HPDs的结构和性能:(a) p-NiO/n-Si HPD的结构[76];(b) p-NiO/n-Si HPD I-V特性,插图显示了I-V曲线的局部放大图[76];(c) n-ZnO纳米管/p-Si HPD的结构[55];(d) n-ZnO/p-Si HPD的响应率和探测率曲线[55];(e) r-GO/n-Si HPD的结构[51];(f) r-GO/n-Si HPD的瞬态响应[51]
Figure 7. Structures and properties of MO/Si HPDs: (a) Structure of p-NiO/n-Si HPD[76]; (b) I-V characteristic curves of the p-NiO/n-Si HPD, the inset shows a close-up view of the I-V curves[76]; (c) Structure of the n-ZnO nanotubes/p-Si HPD[55]; (d) The responsivity and detectivity curves of the n-ZnO/p-Si HPD[55]; (e) Structure of the r-GO/n-Si HPD[51]; (f)Transient response of the r-GO/n-Si HPD[51]
图 8 金属氧化物HPDs的性能优化:(a) ε-Ga2O3/p-Si和ε-Ga2O3/Al2O3/p-Si HPDs的log I-V曲线[26];(b) NiO/ZnO和NiO/TiO2/ZnO HPDs在暗条件的log I-V曲线[67];(c) MoO3-x/Si HPD在光照下的J−V曲线[48];(d) p-NiO/n-ZnO和Pd NPs/p-NiO/n-ZnO NWs在可调制紫外光下的光电流和暗电流比[84];(e) Pd NPs/p-NiO/n-ZnO NWs的能带图[84];(f) 采用Al六方点等离子体阵列制备的Pd/TiO2/p-Si/Al HPD[87];(g) NiOx/n-Si和p-Ag: NiOx/n-Si HPDs的响应光谱[88];(h) 不同Eu掺杂浓度的TiO2薄膜的Tauc图[89];(i) n-β-Ga2O3/p-MnO QD和n-β-Ga2O3器件的响应光谱[37]
Figure 8. Performance optimization of metal oxide HPDs (a) Log I-V curves of ε-Ga2O3/p-Si and ε-Ga2O3/Al2O3/p-Si HPDs[26]; (b) Log I-V curves of NiO/ZnO and NiO/TiO2/ZnO HPDs in the dark[67]; (c) J-V curves of MoO3−x/Si HPD under illumination[48]; (d) Iphoto/Idark ratios for the p-NiO/n-ZnO and Pd NPs/p-NiO/n-ZnO NWs unde modulated UV illumination[84]; (e) Band diagrams for Pd NPs/p-NiO/n-ZnO NWs[84]; (f) Design of the fabricated Pd/TiO2/p-Si/Al HPD with Al hexagonal dots plasmonic array[87]; (g) Response spectra of NiOx/n-Si and p-Ag: NiOx/n-Si HPDs[88]; (h) Tauc plots of Eu: TiO2 films with different doping concentration[89]; (i) Response spectra of n-β-Ga2O3/p-MnO QDs and n-β-Ga2O3 device[37]
表 1 不同MOs的性质
Table 1 Properties of different MOs
MOs Conduction type Eg/(eV) Exciton binding energy/(meV) Crystal system Space group Ref. ZnO(Wurtzite) n 3.3 60 Hexagonal P63mc [2] TiO2(Anatase) n 3.2 130 Tetragonal C4/amc [3] TiO2(Rutile) n 3.0 130 Tetragonal P42/mmm [3] β-Ga2O3 n 4.9 40-50 Monoclinic C2/m [4] SnO2 n 3.6 130 Tetragonal P42/mnm [5] MoO3 p 3.0 - Orthorhombic - [6] V2O5 P 2.3 - Monoclinic P21/C [7] NiO P 3.6 110 Cubic Fm3m [8] 表 2 MO/MO和MO/Si HPDs的性能参数对比
Table 2 Comparisons of performance parameters for MO/MO and MO/Si HPDs
Year Structure Fabrication method Bias/V λ/nm EQE/(%) R/(AW−1) D*/Jones Rectification ratio Rise/fall time Ref. 2012 α-Fe2O3/p-Si Chemical solution deposition - 403 - 2×103 - - < 1 ms [43] 2012 TiO2/SrTiO3 Sol-gel 10 260 - 46.1 - - 3.5 ms/1.4 s [44] 2014 NiO/ZnO Spin coating -1 350 1800 10.2 4.66×1012 5×102 - [45] 2015 CuO/SnO2 Magnetron sputtering 0.2 290 - 10.3 - - - [46] 2015 MgZnO/i-MgO/p-Si MOCVD 6 240 600 1.16 - - 15 μs [47] 2015 MoO3−x/n-Si Thermal evaporation 0 900 - - 6.29×1012 - 1/51.4 μs [48] 2016 β-Ga2O3/p-Si Pulsed laser deposition 3 254 1.8×105 370 - - 1.79/0.27 s [49] 2016 Mg0.18Zn0.82O/p-Si Magnetron sputtering - 320 - 4.21 - 32500 - [50] 2016 GO/n-Si Modified Hummers method - 600 - 1.52 - - 2/3.7 ms [51] 2017 NiO/n-Si Magnetron sputtering 5 365 - 4.5 - - 266/200 ms [52] 2017 SnO2/SiO2/p-Si Magnetron sputtering -1 365 - 0.355 2.66×1012 - < 0.1 s [53] 2017 TiO2/NiO Sol-gel
spin-coating and oxidation6 280 80500 181.9 1.56×1014 - 717/598 ms [54] 2017 p-Si/n-ZnO NTs Pulsed laser deposition -5 365 - 101.2 - - 0.44/0.59 s [55] 2019 n-TiO2/p-Si Thermal oxidation -4 365 - 6.74 1.31×1012 - 127.6 /120.3 μs [56] 2019 V2O5/n-Si Thermal evaporation - 940 - 0.185 1.34×1012 - 9.5/123 μs [57] 2019 ZnO/NiO Electrospinning 0 350 - 0.415×10−3 - - 7.5/4.8 s [58] 2019 n-SnO2/SiNWs Metal assisted chemical etching 5 UV - 0.35 8.03×1012 172.3 - [59] 2020 NiO/β-Ga2O3 Magnetron sputtering 10 245 - 27.43 3.14×1012 - - [60] 2020 ZnO/SnO2 core-shell NAs Chemical liquid deposition 1 365 - 28.5(± 0.6) 2.9× 1014 - 8.7 s/20.8 s [61] 2020 p-Cu2O/n-Si Successive ionic layer
adsorption and reaction-5 500 3780 16.2 1.78×1012(−0.1 V) 118.4 < 10 ms [62] 2021 MoO3−x/Al2O3/n-Si Thermal evaporation -5 980 900 7.11 9.85×1012 - 0.109/0.69 ms [63] 2022 NiO/IGZO Magnetron sputtering 0 365 - 0.0288 6.99×1011 7.4×104 15/31 ms [64] 2022 p-Mn2O3/n-Si Rapid thermal
oxidation- 500 140 0.5 7.2×1012 - - [65] 2022 p-Ag2O/n-Si Rapid thermal
oxidation-4 450 118 0.43 9×1011 - - [66] 2023 NiO/TiO2/ZnO Magnetron sputtering 2 365 - 291 6.9×1011 104 163/282 ms [67] 2023 p-NiO/SiO2/n-ZnO Magnetron sputtering 2 365 2×103 5.77 1.51×1011 57 48 ms [68] 2023 p-NiO/n-ZnO/n-Si Magnetron sputtering -1 280 - 3.672 3.3×1012 - 10.5/0.4 s [69] -
[1] YU X, Marks T J, Facchetti A. Metal oxides for optoelectronic applications[J]. Nature Materials, 2016, 15(4): 383-396. DOI: 10.1038/nmat4599
[2] YAO J Q, DENG H, LI M, et al. Improving processes on ZnO-based ultraviolet photodetector[J]. Advanced Materials Research, 2013, 685: 195-200. DOI: 10.4028/www.scientific.net/AMR.685.195
[3] Goldberg Y. Semiconductor near-ultraviolet photoelectronics[J]. Semiconductor Technology, 1999, 14(7): R41. DOI: 10.1088/0268-1242/14/7/201
[4] CHEN X, REN F, GU S, et al. Review of gallium-oxide-based solar -blind ultraviolet photodetectors[J]. Photonics Research, 2019, 7(4): 381-415. DOI: 10.1364/PRJ.7.000381
[5] Kar A, Stroscio M A, Dutta M, et al. Meyyappan, Observation of ultraviolet emission and effect of surface states on the luminescence from tin oxide nanowires[J]. Applied Physics Letters, 2009, 94: 101905. DOI: 10.1063/1.3097011
[6] LI Lin, SUN Yuxuan, SUN Weifeng. First-principles study of electronic structure, magnetic and optical properties of laminated molybdenum oxides[J]. Acta PhysicaSinica, 2019, 68(5): 057101-3.
[7] XIAO Z R, GUO G Y. Structural, electronic and magnetic properties of V2O5-x: An ab initio study[J]. The Journal of Chemical Physics, 2009, 130(21): 214704. DOI: 10.1063/1.3146790
[8] Hwang J D, Chen H Y, Chen Y H, et al. Effect of nickel diffusion and oxygen behavior on heterojunction Schottky diodes of Au/NiO/ZnO with a NiO interlayer prepared by radio-frequency magnetron sputtering[J]. Nanotechnology, 2018, 29(29): 295705. DOI: 10.1088/1361-6528/aac230
[9] OUYANG W, TENG F, HE J H, et al. Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering[J]. Advanced Functional Materials, 2019, 29(9): 1807672. DOI: 10.1002/adfm.201807672
[10] 郭天超. 金属氧化物/硅异质结光电探测器的构建及性能调控[D]. 北京: 中国石油大学, 2020: 16. GUO Tianchao, Construction and Performance Modulation of Metal Oxides/Silicon Heterojunction Photodetectors[D]. Beijing: China University of Petroleum, 2020: 16.
[11] CHEN S, FU Y, Ishaq M, et al. Carrier recombination suppression and transport enhancement enable high-performance self-powered broadband Sb2Se3 photodetectors[J]. InfoMat, 2023, 5(4): e12400. DOI: 10.1002/inf2.12400
[12] HWANG H Y, Iwasa Y, Kawasaki M, et al. Emergent phenomena at oxide interfaces[J]. Nature Materials, 2012, 11(2): 103-113. DOI: 10.1038/nmat3223
[13] Mannhart J, Schlom D G. Oxide interfaces—an opportunity for electronics[J]. Science, 2010, 327(5973): 1607-1611. DOI: 10.1126/science.1181862
[14] Kennedy D. Breakthrough of the year[J]. Science, 2007, 318(5858): 1833-1833. DOI: 10.1126/science.1154158
[15] Shim M, Guyot-Sionnest P. N-type colloidal semiconductor nanocrystals[J]. Nature, 2000, 407(6807): 981-983. DOI: 10.1038/35039577
[16] JI T, LIU Q, ZOU R, et al. Enhanced UV-visible light photodetectors with a TiO2/Si heterojunction using band engineering[J]. Journal of Materials Chemistry C, 2017, 5(48): 12848-12856. DOI: 10.1039/C7TC04811D
[17] CHEN X, XU Y, ZHOU D, et al. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures[J]. ACS Applied materials & Interfaces, 2017, 9(42): 36997-37005.
[18] Serin N, Yildiz A, Alsaç A A, et al. Estimation of compensation ratio by identifying the presence of different hopping conduction mechanisms in SnO2 thin films[J]. Thin Solid Films, 2011, 519(7): 2302-2307. DOI: 10.1016/j.tsf.2010.11.027
[19] Choi J M, Im S. Ultraviolet enhanced Si-photodetector using p-NiO films[J]. Applied Surface Science, 2005, 244(1-4): 435-438. DOI: 10.1016/j.apsusc.2004.09.152
[20] Almora O, Gerling L G, Voz C, et al. Superior performance of V2O5 as hole selective contact over other transition metal oxides in silicon heterojunction solar cells[J]. Solar Energy Materials and Solar Cells, 2017, 168: 221-226. DOI: 10.1016/j.solmat.2017.04.042
[21] Bullock J, WAN Y, XU Z, et al. Stable dopant-free asymmetric heterocontact silicon solar cells with efficiencies above 20%[J]. ACS Energy Letters, 2018, 3(3): 508-513. DOI: 10.1021/acsenergylett.7b01279
[22] WU W, BAO J, JIA X, et al. Dopant-free back contact silicon heterojunction solar cells employing transition metal oxide emitters[J]. PhysicaStatus Solidi-Rapid Research Letters, 2016, 10(9): 662-667. DOI: 10.1002/pssr.201600254
[23] Costas A, Florica C, Preda N, et al. Radial heterojunction based on single ZnO-CuxO core-shell nanowire for photodetector applications[J]. Scientific Reports, 2019, 9(1): 5553. DOI: 10.1038/s41598-019-42060-w
[24] Ahmed A A, Hashim M R, Qahtan T F, et al. Preparation and characteristics study of self-powered and fast response p-NiO/n-Si heterojunction photodetector[J]. Ceramics International, 2022, 48(14): 20078-20089. DOI: 10.1016/j.ceramint.2022.03.285
[25] HWANG J D, WU M S. Separate absorption and multiplication solar-blind photodiodes based on p-NiO/MgO/n-ZnO heterostructure[J]. Nanotechnology, 2020, 32(1): 015503.
[26] QIAN H, ZHANG X, MA Y, et al. Quasi-vertical ε-Ga2O3 solar-blind photodetectors grown on p-Si substrates with Al2O3 buffer layer by metalorganic chemical vapor deposition[J]. Vacuum, 2022, 200: 111019. DOI: 10.1016/j.vacuum.2022.111019
[27] Mondal S, Halder S, Basak D. Ultrafast and ultrabroadband UV-vis-NIR photosensitivity under reverse and self-bias conditions by n+-ZnO/n-Si isotype heterojunction with > 1 kHz bandwidth[J]. ACS Applied Electronic Materials, 2023, 5(2): 1212-1223. DOI: 10.1021/acsaelm.2c01668
[28] Reddy Y A K, Ajitha B, Sreedhar A, et al. Enhanced UV photodetector performance in bi-layer TiO2/WO3 sputtered films[J]. Applied Surface Science, 2019, 494: 575-582. DOI: 10.1016/j.apsusc.2019.07.124
[29] ZU P, TANG Z K, WONG G K L, et al. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature[J]. Solid State Communications, 1997, 103(8): 459-463. DOI: 10.1016/S0038-1098(97)00216-0
[30] Kawazoe H, Yanagi H, Ueda K, et al. Transparent p-type conducting oxides: design and fabrication of pn heterojunctions[J]. MRS Bulletin, 2000, 25(8): 28-36. DOI: 10.1557/mrs2000.148
[31] Park J W, Bogorin D F, Cen C, et al. Creation of a two-dimensional electron gas at an oxide interface on silicon[J]. Nature Communications, 2010, 1(1): 94. DOI: 10.1038/ncomms1096
[32] HONG Q, CAO Y, XU J, et al. Self-powered ultrafast broadband photodetector based on p–n heterojunctions of CuO/Si nanowire array[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 20887-20894.
[33] ZOU H, LI X, PENG W, et al. Piezo-phototronic effect on selective electron or hole transport through depletion region of vis-NIR broadband photodiode[J]. Advanced Materials, 2017, 29(29): 1701412. DOI: 10.1002/adma.201701412
[34] WEI C, XU J, SHI S, et al. The improved photoresponse properties of self-powered NiO/ZnO heterojunction arrays UV photodetectors with designed tunable Fermi level of ZnO[J]. Journal of Colloid and Interface Science, 2020, 577: 279-289. DOI: 10.1016/j.jcis.2020.05.077
[35] LONG Z, XU X, YANG W, et al. Cross-bar SnO2-NiO nanofiber-array-based transparent photodetectors with high detectivity[J]. Advanced Electronic Materials, 2020, 6(1): 1901048. DOI: 10.1002/aelm.201901048
[36] ZHAO B, WANG F, CHEN H, et al. Solar-blind avalanche photodetector based on single ZnO-Ga2O3 core–shell microwire[J]. Nano Letters, 2015, 15(6): 3988-3993. DOI: 10.1021/acs.nanolett.5b00906
[37] Alwadai N, Alharbi Z, Alreshidi F, et al. Enhanced Photoresponsivity UV-C photodetectors using a p–n junction based on ultra-wide-band gap Sn-doped β-Ga2O3 microflake/MnO quantum dots[J]. ACS Applied Materials & Interfaces, 2023, 15(9): 12127-12136.
[38] XU R, RUAN S, ZHANG D, et al. Enhanced performance of ultraviolet photodetector modified by quantum dots with high responsivity and narrow detection region[J]. Journal of Alloys and Compounds, 2018, 751: 117-123. DOI: 10.1016/j.jallcom.2018.03.382
[39] HE C, GUO D, CHEN K, et al. α-Ga2O3 nanorod array——Cu2O microsphere p–n junctions for self-powered spectrum-distinguishable photodetectors[J]. ACS Applied Nano Materials, 2019, 2(7): 4095-4103. DOI: 10.1021/acsanm.9b00527
[40] WANG D, SHI P, XING R, et al. Self-powered ZnO/SrCoOx flexible ultraviolet detectors processed at room temperature[J]. Materials & Design, 2021, 203: 109616.
[41] WU Z, ZHANG Z, SUN M, et al. Self-powered photodetector based on p-type CuBi2O4 with Fermi level engineering[J]. Advanced Materials Interfaces, 2021, 8(24): 2101443. DOI: 10.1002/admi.202101443
[42] Ashtar M, Marwat M A, LI Z, et al. Self-powered ultraviolet/visible photodetector based on CuBi2O4/PbZr0.52Ti0.48O3 heterostructure[J]. Journal of Luminescence, 2023, 260: 119855. DOI: 10.1016/j.jlumin.2023.119855
[43] SA T, WU G, QIN N, et al. Solution processed highly sensitive visible-light photodetectors based on α-Fe2O3/p-Si heterojunctions[J]. Sensors and Actuators B: Chemical, 2012, 173: 414-418. DOI: 10.1016/j.snb.2012.07.027
[44] ZHANG M, ZHANG H, LV K, et al. Ultraviolet photodetector with high internal gain enhanced by TiO2/SrTiO3 heterojunction[J]. Optics Express, 2012, 20(6): 5936-5941. DOI: 10.1364/OE.20.005936
[45] Kim D Y, Ryu J, Manders J, et al. Air-stable, solution-processed oxide p–n heterojunction ultraviolet photodetector[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 1370-1374.
[46] XIE T, Hasan M R, QIU B, et al. High-performing visible-blind photodetectors based on SnO2/CuO nanoheterojunctions[J]. Applied Physics Letters, 2015, 107(24): 241108. DOI: 10.1063/1.4938129
[47] XIE X, ZHANG Z, LI B, et al. Ultra-low threshold avalanche gain from solar-blindphotodetector based on graded-band-gap-cubic-MgZnO[J]. Optics Express, 2015, 23(25): 32329-32336. DOI: 10.1364/OE.23.032329
[48] ZHAO C, LIANG Z, Su M, et al. Self-powered, high-speed and visible–near infrared response of MoO3–x/n-Si heterojunction photodetector with enhanced performance by interfacial engineering[J]. ACS Applied Materials & Interfaces, 2015, 7(46): 25981-25990.
[49] GUO X C, HAO N H, GUO D Y, et al. β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity[J]. Journal of Alloys and Compounds, 2016, 660: 136-140. DOI: 10.1016/j.jallcom.2015.11.145
[50] HWANG J D, WANG S Y, HWANG S B. Using oxygen-plasma treatment to improve the photoresponse of Mg0.18Zn0.82O/p-Si heterojunction photodetectors[J]. Journal of Alloys and Compounds, 2016, 656: 618-621. DOI: 10.1016/j.jallcom.2015.10.065
[51] LI G, LIU L, WU G, et al. Self-powered UV——near infrared photodetector based on reduced graphene oxide/n-Si vertical heterojunction[J]. Small, 2016, 12(36): 5019-5026. DOI: 10.1002/smll.201600835
[52] Ahmed A A, Devarajan M, Afzal N. Fabrication and characterization of high performance MSM UV photodetector based on NiO film[J]. Sensors and Actuators A: Physical, 2017, 262: 78-86. DOI: 10.1016/j.sna.2017.05.028
[53] LING C, GUO T, LU W, et al. Ultrahigh broadband photoresponse of SnO2 nanoparticle thin film/SiO2/p-Si heterojunction[J]. Nanoscale, 2017, 9(25): 8848-8857. DOI: 10.1039/C7NR03437G
[54] ZHANG D, LIU C, XU R, et al. The effect of self-depleting in UV photodetector based on simultaneously fabricated TiO2/NiOpn hetero-junction and Ni/Au composite electrode[J]. Nanotechnology, 2017, 28(36): 365505. DOI: 10.1088/1361-6528/aa7bb8
[55] Flemban T H, Haque M A, Ajia I, et al. A photodetector based on p-Si/n-ZnO nanotube heterojunctions with high ultraviolet responsivity[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 37120-37127.
[56] Chauhan K R, Patel D B. Functional nanocrystalline TiO2 thin films for UV enhanced highly responsive silicon photodetectors[J]. Journal of Alloys and Compounds, 2019, 792: 968-975. DOI: 10.1016/j.jallcom.2019.04.111
[57] FU Y, LIU Y, MA K, et al. Interfacial engineering to boost photoresponse performance and stability of V2O5/n-Si heterojunction photodetectors[J]. Journal of Alloys and Compounds, 2020, 819: 153063. DOI: 10.1016/j.jallcom.2019.153063
[58] ZHANG Z, NING Y, FANG X. From nanofibers to ordered ZnO/NiO heterojunction arrays for self-powered and transparent UV photo-detectors[J]. Journal of Materials Chemistry C, 2019, 7(2): 223-229. DOI: 10.1039/C8TC05877F
[59] Yuvaraja S, Kumar V, Dhasmana H, et al. Ultraviolet detection properties of electrodeposited n-SnO2 modified p-Si nanowires hetero-junction photodiode[J]. Journal of Materials Science: Materials in Electronics, 2019, 30: 7618-7628. DOI: 10.1007/s10854-019-01077-7
[60] JIA M, WANG F, TANG L, et al. High-performance deep ultraviolet photodetector based on NiO/β-Ga2O3 heterojunction[J]. Nanoscale Research Letters, 2020, 15(1): 47. DOI: 10.1186/s11671-020-3271-9
[61] FU Q M, PENG J L, YAO Z C, et al. Highly sensitive ultraviolet photodetectors based on ZnO/SnO2 core-shell nanorod arrays[J]. Applied Surface Science, 2020, 527: 146923. DOI: 10.1016/j.apsusc.2020.146923
[62] HUANG C Y, WEI E C, YUAN C T. Dual functional modes for nano-structured p-Cu2O/n-Si heterojunction photodiodes[J]. Nanotechnology, 2020, 32(7): 075202.
[63] XU Y, SHEN H, XU B, et al. High-performance MoOx/n-Si heterojunction NIR photodetector with aluminum oxide as a tunneling passivation interlayer[J]. Nanotechnology, 2021, 32(27): 275502. DOI: 10.1088/1361-6528/abf37c
[64] WANG M, ZHANG J, XIN Q, et al. Self-powered UV photodetectors and imaging arrays based on NiO/IGZO heterojunctions fabricated at room temperature[J]. Optics Express, 2022, 30(15): 27453-27461. DOI: 10.1364/OE.463926
[65] Kadhm A J, Ismail R A, Atwan A F. Fabrication of visible-enhanced nanostructured Mn2O3/Si heterojunction photodetector by rapid thermal oxidation[J]. Silicon, 2022, 14(10): 5297-5310. DOI: 10.1007/s12633-021-01314-x
[66] Ismail R A, Al-Samarai A M E, Ahmed F M. Preparation of high-quantum efficiency nanostructured Ag2O/Si photodetector by rapid thermal oxidation of Ag2S film: the role of oxidation time[J]. Optik, 2022, 257: 168794. DOI: 10.1016/j.ijleo.2022.168794
[67] SHANG G, TANG L, WU G, et al. High-performance NiO/TiO2/ZnO photovoltaic UV detector[J]. Sensors, 2023, 23(5): 2741. DOI: 10.3390/s23052741
[68] JIA M, WANG F, TANG L, et al. Low-power-consumption ultraviolet photodetector based on p-NiO/SiO2/n-ZnO[J]. Optics & Laser Technology, 2023, 157: 108634.
[69] HWANG J D, LIN M C. ZnO hole blocking layer induced highly UV responsive p-NiO/n-ZnO/n-Si heterojunction photodiodes[J]. Sensors and Actuators A: Physical, 2023, 349: 114087. DOI: 10.1016/j.sna.2022.114087
[70] Basak D, Amin G, Mallik B, et al. Photoconductive UV detectors on sol-gel-synthesized ZnO films[J]. Journal of Crystal Growth, 2003, 256(1-2): 73-77. DOI: 10.1016/S0022-0248(03)01304-6
[71] WANG Y, WU C, GUO D, et al. All-oxide NiO/Ga2O3 p-n junction for self-powered UV photodetector[J]. ACS Applied Electronic Materials, 2020, 2(7): 2032-2038. DOI: 10.1021/acsaelm.0c00301
[72] ZOU J, ZHANG Q, HUANG K, et al. Ultraviolet photodetectors based on anodic TiO2 nanotube arrays[J]. The Journal of Physical Chemistry C, 2010, 114(24): 10725-10729. DOI: 10.1021/jp1011236
[73] CAO R, XU J, SHI S, et al. High-performance self-powered ultraviolet photodetectors based on mixed-dimensional heterostructure arrays formed from NiO nanosheets and TiO2 nanorods[J]. Journal of Materials Chemistry C, 2020, 8(28): 9646-9654. DOI: 10.1039/D0TC01956A
[74] LI Z, QIAO H, GUO Z, et al. High-performance photo-electrochemical photodetector based on liquid-exfoliated few-layered InSe nanosheets with enhanced stability[J]. Advanced Functional Materials, 2018, 28(16): 1705237. DOI: 10.1002/adfm.201705237
[75] Cheemadan S, Kumar M C S. Effect of substrate temperature and oxygen partial pressure on RF sputtered NiO thin films[J]. Materials Research Express, 2018, 5(4): 046401. DOI: 10.1088/2053-1591/aab875
[76] Chaoudhary S, Dewasi A, Rastogi V, et al. Laser ablation fabrication of a p-NiO/n-Si heterojunction for broadband and self-powered UV-visible-NIR photodetection[J]. Nanotechnology, 2022, 33(25): 255202. DOI: 10.1088/1361-6528/ac5ca6
[77] Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions[J]. Advanced Materials, 2003, 15(5): 464-466. DOI: 10.1002/adma.200390108
[78] JIANG D Y, ZHANG X Y, LIU Q S, et al. Improved ultraviolet/visible rejection ratio using MgZnO/SiO2/n-Si heterojunction photodetectors[J]. Applied Surface Science, 2010, 256(21): 6153-6156. DOI: 10.1016/j.apsusc.2010.03.051
[79] ZHANG T C, GUO Y, MEI Z X, et al. Visible-blind ultraviolet photodetector based on double heterojunction of n-ZnO/insulator-MgO∕p-Si[J]. Applied Physics Letters, 2009, 94(11): 113508. DOI: 10.1063/1.3103272
[80] Tasi D S, KANG C F, WANG H H, et al. n-ZnO/LaAlO3/p-Si heterojunction for visible-blind UV detection[J]. Optics Letters, 2012, 37(6): 1112-1114. DOI: 10.1364/OL.37.001112
[81] LI Q, LI Z, YANG H, et al. Novel aluminum plasmonic absorber enhanced by extraordinary optical transmission[J]. Optics Express, 2016, 24(22): 25885-25893. DOI: 10.1364/OE.24.025885
[82] WU Y, SUN X J, JIA Y P, et al. Review of improved spectral response of ultraviolet photodetectors by surface plasmon[J]. Chinese Physics B, 2018, 27(12): 126101. DOI: 10.1088/1674-1056/27/12/126101
[83] El-Mahalawy A M, Wassel A R. Enhancement of organic/inorganic hybrid photodetector based on pentacene/n-Si by surface plasmonic effect of gold and silver nanoparticles: a comparative study[J]. Optics & Laser Technology, 2020, 131: 106395.
[84] Hsu C L, WANG Y C, CHANG S P, et al. Ultraviolet/visible photodetectors based on p-n NiO/ZnO nanowires decorated with Pd nanoparticles[J]. ACS Applied Nano Materials, 2019, 2(10): 6343-6351. DOI: 10.1021/acsanm.9b01333
[85] ZHANG X, CHEN Y L, LIU R S, et al. Plasmonic photocatalysis[J]. Reports on Progress in Physics, 2013, 76(4): 046401. DOI: 10.1088/0034-4885/76/4/046401
[86] Kodama R H, Berkowitz A E. Atomic-scale magnetic modeling of oxide nanoparticles[J]. Physical Review B, 1999, 59(9): 6321. DOI: 10.1103/PhysRevB.59.6321
[87] El-Mahalawy A M, Abdrabou M M, Wassel A R, et al. Plasmonic enhanced ultraviolet photodetection performance of n-TiO2/p-Si anisotype heterojunction with aluminum patterned array[J]. Journal of Physics and Chemistry of Solids, 2022, 170: 110943. DOI: 10.1016/j.jpcs.2022.110943
[88] HWANG J D, WANG S T. High-performance multicolor p-Ag: NiOx/n-Si heterojunction photodiode enhanced by Ag-doped NiOx[J]. Materials Science in Semiconductor Processing, 2022, 139: 106376. DOI: 10.1016/j.mssp.2021.106376
[89] Ruzgar S, Caglar Y, Polat O, et al. An Investigation of the optoelectrical properties of n-TiO2Eu/p-Si heterojunction photodiode[J]. Surfaces and Interfaces, 2022, 30: 101832. DOI: 10.1016/j.surfin.2022.101832
-
期刊类型引用(1)
1. 张巍,苏鹏翼,高涛,贾宝军. 弹簧参数对记忆合金式J-T制冷器流量的影响. 低温与超导. 2022(08): 93-99 . 百度学术
其他类型引用(0)