Optical Design of Light-Small MWIR Continuous Zoom System
-
摘要: 根据连续变焦理论模型,编制连续变焦计算程序,求得变焦系统初始解,建立理想光学模型,通过选材选型及迭代优化,实现仅由4片红外透镜及两片平面反射镜组成的中波红外连续变焦光学系统。该系统F#为4、工作波段为3.7~4.8 μm、视场变化范围为20°×16°~2.0°×1.6°、光学零件最大口径为71 mm、零件总重64 g,系统包络为172 mm×108 mm,系统采用两个二元衍射面用于消色差,通过材料合理配置及主动补偿实现系统消热差设计。该中波红外连续变焦光学系统重量轻、总长短、包络小,在-40℃~+60℃温度范围全视场成像质量良好。Abstract: According to the theoretical model of continuous zoom optics, the continuous zoom calculation program is compiled, the initial solution of the zoom system is obtained, and the paraxial optical model is established. Through material selection and iterative optimization, a midwave-infrared continuous-zoom optical system consisting of only four infrared lenses and two planar mirrors was realized. The F number of the system is 4, the spectral range is 3.7 to 4.8 μm, the field of view (FOV) is 20°×16° to 2.0°×1.6°, and the maximum aperture of lenses is 71.0 mm, the total weight of the lenses is 64 g, and the system envelope is 172 mm×108 mm. The system uses two binary surfaces for the achromatic. The athermalization design of the system was realized through the rational allocation of materials and active compensation. The medium wave infrared continuous zoom optical system has the advantages of light weight, short total length, small envelope, and good image quality in the temperature range of -40℃ to 60℃.
-
Keywords:
- optical design /
- MWIR /
- continuous zoom /
- athermalization
-
-
表 1 探测器参数
Table 1 Parameters of detector
Detector HgCdTe Array size 640×512 Pixel dimension/μm 15 NETD/mK ≤22 Spectral response/μm 3.7−4.8 μm Weight ≤380 g 表 2 光学系统设计指标
Table 2 Parameters of optical system design
Working waveband/μm 3.7 to 4.8 Zoom 10:01 Field of view 20°×16° to 2.0°×1.6° F# 4 Focal length/mm 27.0~275 Working temperature/℃ -40 to 60 表 3 变焦系统初始间隔参数
Table 3 Initial spacing parameters of optical system
Focal length/mm 275 215 150 78.6 25.9 f1/f2 spacing/mm 83.49 80.06 74.56 59.44 18.90 f2/f3 spacing/mm 13.02 24.01 38.57 68.69 125.94 f3/f4 spacing/mm 67.23 59.67 50.61 35.61 18.90 -
[1] 张坤杰. 国外三代红外探测器制冷机的研究现状[J]. 云光技术, 2020, 52(1): 28-37. ZHANG Kunjie. Research status of three generation infrared detector refrigerators abroad[J]. YUN GUANG JI SHU, 2020, 52(1): 28-37.
[2] 陈吕吉, 明景谦, 马琳, 等. 四片式非制冷长波红外热像仪双视场光学系统[J]. 红外技术, 2010, 32(1): 25-28. DOI: 10.3969/j.issn.1001-8891.2010.01.006 CHEN Lvji, MING Jingqian, MA Lin, et al. A four-piece dual field of view optical system for LWIR thermal imager[J]. Infrared Technology, 2010, 32(1): 25-28. DOI: 10.3969/j.issn.1001-8891.2010.01.006
[3] 何红星, 赵劲松, 唐晗, 等. 一种高性能双视场长波红外光学系统[J]. 红外技术, 2017, 39(5): 394-398. http://hwjs.nvir.cn/article/id/hwjs201705002 HE Hongxing, ZHAO Jingsong, TANG Han, et al. High performance dual fields of view LWIR optical system[J]. Infrared Technology, 2017, 39(5): 394-398. http://hwjs.nvir.cn/article/id/hwjs201705002
[4] 徐正奎, 于振龙, 王春兴, 等. 四片式10×中波双视场光学系统设计和分析[J]. 红外技术, 2019, 41(9): 824-830. http://hwjs.nvir.cn/article/id/hwjs201909005 XU Zhengkui, YU Zhenlong, WANG Chunxing, et al. Four-piece medium wave dual field of view 10× optical system[J]. Infrared Technology, 2019, 41(9): 824-830. http://hwjs.nvir.cn/article/id/hwjs201909005
[5] 陶纯堪. 变焦距光学系统设计[M]. 北京: 国防工业出版社. 1988. TAO C K. Zoom Focus Optics System Design[M]. Beijing: National Defense Industry Press, 1988.
[6] 宋菲君, 陈笑, 刘畅. 近代光学系统设计概论[M]. 北京: 科学出版社, 2019. SONG Feijun, CHEN Xiao, LIU Chang. Introduction to Modern Optical System Design[M]. Beijing: Science Press, 2019.
[7] 张发平, 张华卫. 基于二元衍射面的长波无热化光学系统设计[J]. 红外技术, 2020, 42(1): 25- 29. http://hwjs.nvir.cn/article/id/hwjs202001004 ZHANG Faping, ZHANG Huawei. Design of long-wave athermal optical system based on binary diffractions surface[J]. Infrared Technology, 2020, 42(1): 25-29. http://hwjs.nvir.cn/article/id/hwjs202001004
[8] 王春艳, 王志坚, 周庆才. 应用动态光学理论求解变焦光学系统补偿组凸轮曲线[J]. 光学学报, 2006, 26(6): 891-894. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200606019.htm WANG Chunyan, WANG Zhijian, ZHOU Qingcai. Solving the cam curve of the compensating group about zoom lens using dynamic optical theory[J]. Acta Optica Sinica, 2006, 26(6): 891-894. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200606019.htm
-
期刊类型引用(9)
1. 禹鑫鹏,贺庆,刘佳镕,王林瑶. 红外体温检测手环的温度补偿研究. 工业计量. 2024(01): 1-4 . 百度学术
2. 王静. 红外耳温计测量结果的不确定度评定. 品牌与标准化. 2024(03): 254-256 . 百度学术
3. 吴珊. 海峡两岸红外及电子体温计标准比对分析. 中国标准化. 2024(15): 212-217 . 百度学术
4. 张新影. 分析测量人体温度用温度计的选择和使用. 科技资讯. 2023(09): 226-229 . 百度学术
5. 陈镔. 一种新型的双模式红外传感器热电元件温度测量方法. 光电子·激光. 2023(10): 1068-1074 . 百度学术
6. 张杰,朱杨冕,王飞鹏,游皓宇. 图书馆防疫实时监测系统. 电子制作. 2023(22): 73-77 . 百度学术
7. 张晓娟,付杨涛,成晋军. 一种高精度的基于红外技术的测温系统设计. 山西电子技术. 2022(01): 13-15 . 百度学术
8. 齐曼,胡乃瑞,安天洋,高唯峰. 基于STM32的口罩识别及无接触测温系统的实现. 工业控制计算机. 2022(03): 128-130 . 百度学术
9. 刘琦,张济国. 辐射测温设备性能影响因素及温度补偿/修正方法的研究. 中国安全防范技术与应用. 2022(Z2): 35-44 . 百度学术
其他类型引用(1)