基于模糊推理的电气设备红外图像分割

Infrared Image Segmentation for Electrical Equipment based on Fuzzy Inference

  • 摘要: 使用模糊理论处理电气设备红外图像分割的不确定性,提出了一种基于模糊推理的电气设备红外图像分割算法。首先分别利用电气设备红外图像故障区域的像素灰度、像素点与图像质心的马氏距离以及图像膨胀操作定义了强度特征、全局故障可能性特征和局部灰度特征;然后根据特征的模糊语言值制定了27条模糊规则,设计了一种模糊推理红外图像分割算法;最后,从主观和客观评价指标上将算法与传统Otsu算法和FCM算法进行了对比。实验表明,该算法的分割精度和误分割率比其他两种算法都有一定的改善,同时该算法能够滤除图像中具有高亮度的干扰区域,对具有小亮度差和小面积故障区域的红外图像有较好的分割效果。

     

    Abstract: Fuzzy theory is considered to address the uncertainty of infrared image segmentation of electrical equipment, and a new algorithm based on fuzzy inference for infrared image segmentation of electrical equipment is proposed in this paper. First, the intensity, global fault probability, and local grayscale features were defined using the pixel grayscale of the fault region in the infrared image of the electrical equipment, Mahalanobis distance between pixel points, image center of mass, and image dilation operation. Subsequently, 27 fuzzy rules were formulated based on the fuzzy language values of the features, and an infrared image segmentation algorithm based on fuzzy inference was designed. Finally, the algorithm was compared with the traditional Otsu and FCM algorithms in terms of subjective and objective evaluation indexes. Further, the experimental results show that the segmentation accuracy and misclassification error of the proposed algorithm are better than those of the other two algorithms. The algorithm can filter out interference regions with high luminance in infrared images, and exhibits a better segmentation effect on infrared images with small luminance differences and small fault areas.

     

/

返回文章
返回