光学非球面面形轮廓检测技术

焦松峰, 谢启明, 刘尧, 王一卓, 范威, 游津京, 杨永华, 张宸钢

焦松峰, 谢启明, 刘尧, 王一卓, 范威, 游津京, 杨永华, 张宸钢. 光学非球面面形轮廓检测技术[J]. 红外技术, 2023, 45(5): 534-540.
引用本文: 焦松峰, 谢启明, 刘尧, 王一卓, 范威, 游津京, 杨永华, 张宸钢. 光学非球面面形轮廓检测技术[J]. 红外技术, 2023, 45(5): 534-540.
JIAO Songfeng, XIE Qiming, LIU Yao, WANG Yizhuo, FAN Wei, YOU Jinjing, YANG Yonghua, ZHANG Chengang. Optical Aspheric Surface Profile Testing Technology[J]. Infrared Technology , 2023, 45(5): 534-540.
Citation: JIAO Songfeng, XIE Qiming, LIU Yao, WANG Yizhuo, FAN Wei, YOU Jinjing, YANG Yonghua, ZHANG Chengang. Optical Aspheric Surface Profile Testing Technology[J]. Infrared Technology , 2023, 45(5): 534-540.

光学非球面面形轮廓检测技术

详细信息
    作者简介:

    焦松峰(1995-),男,硕士生,主要从事单点金刚石车削和非球面检测方面的研究。E-mail:1639548057@qq.com

    通讯作者:

    谢启明(1966-),男,研究员高级工程师,硕士,主要从事单点金刚石切削工艺、复杂表面及自由曲面超精密加工工艺、光学零件的检测技术方面的研究。E-mail:646010668@qq.com

  • 中图分类号: TH74

Optical Aspheric Surface Profile Testing Technology

  • 摘要: 随着科技的进步,尖端产品和先进光电系统对光学系统的成像质量要求越来越高,光学非球面元件能有效地校正像差、减少系统所需光学元件数量、减轻系统重量,因此被广泛应用。其特殊的面形特征决定了它的加工和检测相对于球面更加困难,而检测精度直接决定了加工精度,非球面检测技术的重要性显而易见。根据测量原理对光学非球面的检测技术进行了概述;根据目前直接面形轮廓法在光学非球面的加工中应用最广的情况,结合最新检测手段,重点介绍了非球面直接面形轮廓法测量技术;并介绍了近年来日益受到人们关注的自由曲面及面形轮廓法在自由曲面检测的应用;最后总结了光学非球面检测技术的现状和发展趋势。
    Abstract: With the progress of science and technology, cutting-edge products and advanced photoelectric systems have increasingly higher requirements regarding the imaging quality of the optical system. Optical aspheric elements, which are widely used, can effectively correct the aberration, reduce the number of optical elements required by the system, and reduce the weight of the system. Because of the specific surface characteristics, machining and testing such systems are more difficult than for spherical particles; the testing accuracy directly determines the processing accuracy, and the importance of aspheric testing technology is obvious. Herein, the testing technology of optical aspheric surface is summarized according to measuring principle; As direct surface profilometry is widely used in optical aspheric surface machining, combined with the latest testing methods, the measurement technology of aspheric surface direct surface profilometry is mainly introduced; The application of freeform surface and surface profilometry in freeform surface testing, which has attracted increasing attention in recent years, is introduced; Finally, the present situation and development trend of aspheric surface testing technology are summarized.
  • 图  1   非球面光学元件示意图

    Figure  1.   Diagram of aspherical optical elements

    图  2   接触式轮廓仪测量原理

    Figure  2.   Measuring principle of contact profilometer

    图  3   接触式轮廓仪

    Figure  3.   Contact profilometer

    图  4   NMF轮廓仪及测量原理

    Figure  4.   NMF profilometer and measuring principle

    图  5   Luphoscan轮廓仪及测量原理

    Figure  5.   Luphoscan profilometer and measurement principle

    图  6   LuphoScan测量硅自由曲面

    Figure  6.   LuphoScan measures silicon free-form surfaces

    图  7   NMF测量凸自由曲面[17]

    Figure  7.   NMF measures convex free-form surfaces[17]

  • [1] 张小兵. 非球面光学元件加工及检测技术综述[J]. 兵器材料科学与工程, 2014, 37(2): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201402038.htm

    ZHANG Xiaobing. Review on machining and testing technology of aspheric optical elements[J]. Ordnance Materials Science and Engineering, 2014, 37(2): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201402038.htm

    [2]

    FORBES G W. Shape specification for axially symmetric optical surfaces[J]. Optics Express, 2007, 15(8): 5218-5226. DOI: 10.1364/OE.15.005218

    [3] 谢启明. 单点金刚石切削在红外光学的应用[D]. 昆明: 昆明物理研究所, 2002.

    XIE Qiming. Application of Single Point Diamond Cutting in Infrared Optics[D]. Kunming: Kunming Institute of Physics, 2002.

    [4] 师途, 杨甬英, 张磊, 等. 非球面光学元件的面形检测技术[J]. 中国光学, 2014, 7(1): 26-46. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201401002.htm

    SHI Tu, YANG Yongying, ZHANG Lei, et al. Surface shape detection technology of aspherical optics[J]. Chinese Optics, 2014, 7(1): 26-46. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201401002.htm

    [5] 闫峰涛, 范斌, 侯溪, 等. 基于子孔径拼接的Hindle球检测法[J]. 强激光与粒子数, 2012, 24(11): 2555-2559. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201211010.htm

    YAN Fengtao, FAN Bin, HOU Xi, et al Hindle ball detection method based on sub aperture stitching[J]. Intense Laser and Particle Number, 2012, 24(11): 2555-2559 https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201211010.htm

    [6]

    ALIKENS D M, WOLFE C R. Use of power spectral density(PSD) functions in specifying optics for the National Ignition Facility[C]//Proc. of SPIE, 1995, 2576: 2812292.

    [7]

    BRAY M. Stitching interferometry: how and why it works[C]//Proc. of SPIE, 1999, 3739: 259-273.

    [8] 刘崇. 非球面环形子孔径拼接干涉测试方法研究[D]. 南京: 南京理工大学, 2009.

    LIU Chong. Research on Measurement Method of Aspheric Ring Subaperture Splicing Interference[D]. Nanjing: Nanjing University of Science and Technology, 2009.

    [9] 潘君骅. 光学非球面的设计、加工与检测[M]. 苏州: 苏州大学出版社, 2004.

    PAN Junhua. Design, Machining and Testing of Optical Aspheric Surface [M]. Suzhou: Soochow University Press, 2004.

    [10] 王洪臣. 二次旋转曲面法线等距离线加工法及机床研制[D]. 长春: 长春理工大学, 2007.

    WANG Hongchen. Normal Isometric Machining Method of Quadratic Rotary Surface and Machine Tool Development[D]. Changchun: Changchun University of Science and Technology, 2007.

    [11] 贾世奎, 李成贵, 杨辉, 等. 非球面光学元件面形检测方法[J]. 上海计量测试, 2009, 36(5): 2-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SJLC200905005.htm

    JIA Shikui, LI Chenggui, YANG Hui, et al. Surface shape detection method of aspherical optical elements[J]. Shanghai Metrological Measurement, 2009, 36(5): 2-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SJLC200905005.htm

    [12] 杨志文. 光学测量[M]. 北京: 北京理工大学出版社, 1995.

    YANG Zhiwen. Optical Measurement[M]. Beijing: Beijing Institute of Technology Press, 1995.

    [13] 普里亚耶夫. 光学非球面检验[M]. 北京: 科学出版社, 1982.

    Priayev. Optical Aspherical Testing[M]. Beijing: Science Press, 1982.

    [14] 马天宇. 基于激光干涉测量原理的轮廓测量系统[D]. 杭州: 浙江理工大学, 2018.

    MA Tianyu. Profile Measurement System Based on Laser Interferometry Principle[D]. Hangzhou: Zhejiang Sci-Tech University, 2018.

    [15] 王孝坤. 激光跟踪仪检验非球面面形的方法[J]. 光子学报, 2012, 41(4): 379-383. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201204002.htm

    WANG Xiaokun. A method to test aspheric surface shape with laser tracker[J]. Acta Photonica Sinica, 2012, 41(4): 379-383. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201204002.htm

    [16] 李静, 杨辉, 李杰. 自由曲面光学元件检测方法研究[J]. 航空精密制造技术, 2019, 55(3): 31-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZJ201903009.htm

    LI Jing, YANG Hui, LI Jie. Research on testing methods for free form surface optical elements[J] Aerospace Precision Manufacturing Technology, 2019, 55(3): 31-33 https://www.cnki.com.cn/Article/CJFDTOTAL-HJZJ201903009.htm

    [17] 重庆孚纳科技有限公司. NMF高精度非接触三维轮廓仪产品手册[Z]. 2021.

    Chongqing Funa Technology Co. LTD. NMF High Precision Non-contact 3D Profiler Product Manual[Z]. 2021.

    [18] 张磊, 刘东, 师途, 等. 光学自由曲面面形检测技术[J]. 中国光学, 2017, 10(3): 283-299. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201703001.htm

    ZHANG Lei, LIU Dong, SHI Tu, et al. Surface shape detection technology of optical free-form surface[J]. Chinese Optics, 2017, 10(3): 283-299. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201703001.htm

    [19] 吴仍茂. 自由曲面照明设计方法的研究[D]. 杭州: 浙江大学, 2013.

    WU Renmao. Research on Design Method of Free-form Surface Lighting[D]. Hangzhou: Zhejiang University, 2013.

    [20]

    TIAN F, YIN Z, LI S. Fast tool servo diamond turning of optical freeform surfaces for rear-view mirrors[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(9): 1759-1765. DOI: 10.1007%2Fs00170-015-7152-9.pdf

    [21] 孟祥翔, 刘伟奇, 张大亮, 等. 双自由曲面大视场头盔显示光学系统设计[J]. 红外与激光工程, 2016, 45(4): 196-201. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201604029.htm

    MENG Xiangxiang, LIU Weiqi, ZHANG Daliang, et al. Design of dual-free-form helmet display optical system with large field of view[J]. Infrared and Laser Engineering, 2016, 45(4): 196-201. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201604029.htm

    [22] 刘军, 黄玮. 反射式自由曲面头盔显示器光学系统设计[J]. 红外与激光工程, 2016, 45(10): 150-155. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201610023.htm

    LIU Jun, HUANG Wei. Optical system design of reflective free-form helmet-mounted display[J]. Infrared and Laser Engineering, 2016, 45(10): 150-155. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201610023.htm

    [23]

    WANG Q F, CHENG D W, WANG W T, et al. Design, tolerance, and fabrication of an optical see-through head-mounted display with free-form surface elements[J]. Applied Optics, 2013, 52(7): C88. http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-52-7-C88

    [24] 赵伟, 刘旭, 李海峰. 基于自由曲面阵列的激光投影显示照明系统设计[J]. 光学学报, 2018, 38(6): 291-297. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201806039.htm

    ZHAO Wei, LIU Xu, LI Haifeng. Design of laser projection display lighting system based on free-form surface array[J]. Acta Optica Sinica, 2018, 38(6): 291-297. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201806039.htm

    [25] 于百华. 基于自由曲面的超短焦投影物镜关键技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2019.

    YU Baihua. Research on Key Technologies of Ultra-short focal projection objective Based on Free-form Surface[D]. Changchun: University of Chinese Academy of Sciences(Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2019.

    [26] 朱日宏, 孙越, 沈华. 光学自由曲面面形检测方法进展与展望[J]. 光学学报, 2021, 41(1): 161-178. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202101012.htm

    ZHU Rihong, SUN Yue, SHEN Hua. Advances and prospects of surface shape detection methods for optical free-form surfaces[J]. Acta Optica Sinica, 2021, 41(1): 161-178. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202101012.htm

    [27]

    MENG Q Y, WANG H Y, LIANGW J, et al. Design of off-axis three-mirror systems with ultrawide field of view based on an expansion process of surface free-form and field of view[J]. Applied Optics, 2019, 58(3): 609-615.

  • 期刊类型引用(12)

    1. 谢国波,何宇钦,林志毅,唐晶晶,文刚. 融合Swin Transformer与UNet的云检测架构. 遥感信息. 2023(03): 1-8 . 百度学术
    2. 刘燕,张力,王庆栋,王春青,韩晓霞. 国产高分辨率卫星影像云检测. 遥感信息. 2022(01): 134-142 . 百度学术
    3. 张利斌,石文轩,孙世磊,高旭东. 多层级特征融合U-Net的遥感图像云检测. 信息系统工程. 2022(02): 8-12 . 百度学术
    4. 朱博,钟方洁,赵军锁. 基于分形维数和角二阶矩辅助的卷积神经网络云雪识别研究. 遥感技术与应用. 2022(06): 1328-1338 . 百度学术
    5. 谢涛,任佳昊,王超. IGBP云检测网格产品升尺度方法及精度评价. 遥感信息. 2022(06): 8-14 . 百度学术
    6. 孙阳,郑新杰. 一种基于RGB彩色遥感影像的云检测方法. 测绘与空间地理信息. 2021(S1): 9-11+15 . 百度学术
    7. 李应芸,徐忠彪,严佩升,杨冬琴. 基于主成分分离方法的航空图像云检测. 测绘与空间地理信息. 2021(10): 89-93 . 百度学术
    8. 李妹燕. 基于深度学习网络的红外遥感图像多目标检测. 激光杂志. 2021(11): 107-111 . 百度学术
    9. 赵静,龙腾,兰玉彬,龙拥兵,李继宇. 多旋翼无人机近地遥感光谱成像装置研制. 农业工程学报. 2020(03): 78-85 . 百度学术
    10. 曾凡毅. 基于深度学习的嵌入式云检测系统的设计与实现. 工业控制计算机. 2020(05): 131-132+135 . 百度学术
    11. 刘青芳. 用于分割MRI图像中异常信号区的全卷积网络模型训练方法研究. 电子元器件与信息技术. 2019(09): 77-79 . 百度学术
    12. 刘军,郑群峰,邢秀为,陈训来,陈潜,钱静. 风云气象卫星影像自动精细云检测. 测绘通报. 2019(12): 45-49 . 百度学术

    其他类型引用(8)

图(7)
计量
  • 文章访问数:  355
  • HTML全文浏览量:  69
  • PDF下载量:  97
  • 被引次数: 20
出版历程
  • 收稿日期:  2022-09-16
  • 修回日期:  2022-12-11
  • 刊出日期:  2023-05-19

目录

    /

    返回文章
    返回