有机电致发光器件中黑点形成机制及预防研究进展

胡松文, 周允红, 金景一, 杨文运, 杨炜平, 陈雪梅, 陈鹏远, 张磊, 李思德, 高树雄, 雷登林

胡松文, 周允红, 金景一, 杨文运, 杨炜平, 陈雪梅, 陈鹏远, 张磊, 李思德, 高树雄, 雷登林. 有机电致发光器件中黑点形成机制及预防研究进展[J]. 红外技术, 2024, 46(11): 1261-1273.
引用本文: 胡松文, 周允红, 金景一, 杨文运, 杨炜平, 陈雪梅, 陈鹏远, 张磊, 李思德, 高树雄, 雷登林. 有机电致发光器件中黑点形成机制及预防研究进展[J]. 红外技术, 2024, 46(11): 1261-1273.
HU Songwen, ZHOU Yunhong, JIN Jingyi, YANG Wenyun, YANG Weiping, CHEN Xuemei, CHEN Pengyuan, ZHANG Lei, LI Side, GAO Shuxiong, LEI Denglin. Research Progress on the Formation Mechanism and Prevention of Black Spot in Organic Light-Emitting Devices[J]. Infrared Technology , 2024, 46(11): 1261-1273.
Citation: HU Songwen, ZHOU Yunhong, JIN Jingyi, YANG Wenyun, YANG Weiping, CHEN Xuemei, CHEN Pengyuan, ZHANG Lei, LI Side, GAO Shuxiong, LEI Denglin. Research Progress on the Formation Mechanism and Prevention of Black Spot in Organic Light-Emitting Devices[J]. Infrared Technology , 2024, 46(11): 1261-1273.

有机电致发光器件中黑点形成机制及预防研究进展

详细信息
    作者简介:

    胡松文(1990-),男,云南怒江人,硕士,工程师,主要从事OLED器件密封。E-mail:ynuhsw@163.com

  • 中图分类号: TN204

Research Progress on the Formation Mechanism and Prevention of Black Spot in Organic Light-Emitting Devices

  • 摘要:

    有机电致发光器件(OLEDs)由于具有主动发光、响应速度快、视角宽、且与柔性电子兼容等优秀特性而在显示行业广受关注,然而由于器件对水氧非常敏感,一旦跟水氧接触就会失效,其中黑点的形成是影响器件成品率的一大原因。相关研究提出了几种黑点形成机制但并没有特定模型,此外,黑点形成相对模糊且不可预测。为了减少和防止黑点的形成,本文总结了黑点的形成原因,讨论了黑点的形成机制,并给出了黑点预防措施。

    Abstract:

    Organic light-emitting devices (OLEDs) have attracted wide attention in the display industry owing to their excellent characteristics, such as active luminescence, fast response time, wide viewing angle, and compatibility with flexible electronics. Nevertheless, organic luminescent materials are vulnerable to environmental moisture and oxygen, and they fail once they come in contact with water and oxygen. The formation of black spots is one of the main factors affecting the product yields of these devices. Relevant studies have proposed several mechanisms for the formation of black spots; however, there is no specific model. In addition, current models of the formation of black spots are relatively vague and unpredictable. To reduce and prevent the formation of black spots, this study summarizes the causes of black spot formation, discusses the formation mechanism of black spots, and provides preventive measures.

  • 图  1   OLEDs中的颗粒与针孔:(a) 未刺破膜层的外部颗粒和灰尘[12];(b) 膜层中尖刺和针孔[12];(c) 已刺破膜层的有机颗粒[13-14];(d) 已刺破膜层的外来颗粒[13-14]

    Figure  1.   Particles and pinholes in OLEDs: (a) External particles and dust that have not punctured the film[12]; (b) Spikes and pinholes in the membrane[12]; (c) Organic particles that have punctured the membrane[13-14]; (d) Foreign particles that have punctured the membrane[13-14]

    图  2   不同尺寸颗粒影响黑点面积的线性增长曲线[16]

    Figure  2.   The linear growth of Ads for the dark spots with various particles[16]

    图  3   黑点在水氧下的生长机制和形貌:(a) OLEDs在水汽下工作时黑点形成的机理[20];(b) 纯氧环境和无偏压下的黑点生长机理[20];(c) 黑点及黑点周围灰色晕[23-24];(d) OLEDs与水相互作用过程[23-24];(e) 黑点在水氧下的生长机里[3, 14]

    Figure  3.   The growth mechanism of black spots under the action of water and oxygen and the morphology of black spots: (a) mechanism of dark spot formation during operation of an OLED underwater vapor atmosphere[20]; (b) dark spot growth mechanism for an unbiased device under a pure oxygen atmosphere[20]; (c) the grey halo around the black spot[23-24]; (d) the processes of water interaction in the OLEDs[23-24]; (e) growth mechanism of black spots under water and oxygen[3, 14]

    图  4   潮湿环境会诱导有机物结晶形成黑点:(a) Alq3薄膜的透射偏光显微镜照片[6];(b) Alq3与水反应过程及产物[25]

    Figure  4.   Humid environments induce the crystallization of organic matter, leading to the formation of black spots: (a) transmission polarization micrograph of an Alq3 film [6]; (b) reaction of Alq3 complex with water to form 8-Hq and other products[25]

    图  5   局部高电流导致黑点的形成:(a) 黑点生长过程及机理[27];(b) 正常工作时电流走向[9];(c) 电流流向短路[9];(d) 大电流沿圆周方向冲入短路[9];(e) 缺陷中心会产生累积的铝金属原子[9];(f) 圆形边界处的铝阴极会变得足够薄,无法注入电子越过边界界限[9];(g) 黑点光学图片[9]

    Figure  5.   Localized high current leads to the formation of black spots: (a) Illustration of a propagation mechanism of dark spots[27]; (b) Current direction during normal operation[9]; (c) Diversion of current flow into short circuit[9]; (d) Large electric current dashed into the short circuit in a circular manner[9]; (e) Accumulated al metal atoms will be created at the center of the defect, and (f) Al cathode at the circular boundary will become thin enough and not able to inject electrons to cross the boundary limit[9]; (g) Optical micrographs showing dark spot[9]

    图  6   阴极碳化的SEM图:(a) (b) (c)为不图放大倍数下阴极碳化区域的SEM图[31];(d) 热击穿后OLED顶部Al电极的SEM图像[32]

    Figure  6.   SEM images of cathodic carbonization: (a) (b) (c) SEM image of carbonized areas on the surface of the cathode [31]; (d) SEM image of the top Al electrode of the OLEDs after thermal breakdown[32]

    图  7   在ITO和玻璃基板上沉积的NPB/Ca/Ag和Alq3/Ca/Ag层的圆形特征面积随时间的变化[48]

    Figure  7.   The area of circular features as a function of time measured for NPB/Ca/Ag and Alq3/Ca/Ag stacks deposited on both ITO and glass substrates[48]

    图  8   不同阻挡层下水氧渗透路径:(a) 从针孔通过[54];(b) 从晶界处通过[55-56];(c) 从裂纹处通过[57-58];(d) 从薄膜中直接渗透[61]

    Figure  8.   Infiltration paths of water and oxygen in different barrier layers: (a) water and oxygen molecules pass through the pinhole[54]; (b) water and oxygen molecules pass through the grain boundaries[55-56]; (c) water and oxygen molecules pass through the crack[57-58]; (d) water and oxygen molecules permeate directly through the barrier[61]

    图  9   多膜层密封结构:(a) 水透过多层膜中的曲折路线[68];(b) 低和高分辨率的Al2O3/ZrO2叠层薄膜[71];(c) 四对AlOx/聚合物多层膜[76]

    Figure  9.   Multi-membrane seal structures: (a) the tortuous pathway of water through multilayer film[68]; (b) low and high resolution of Al2O3/ZrO2 multi-layer[71]; (c) four pairs of AlOx/polymer multilayer[76]

    图  10   利用原子层渗透(ALI)制备聚合物杂化薄层示意图[77]

    Figure  10.   Schematic illustration of the fabrication of a polymer hybrid thin layer using atomic layer infiltration (ALI)[77]

    表  1   黑点形成原因总结

    Table  1   Summary of the formation reasons of black spot

    Device Architecture Structure of black spot Test conditions Causes of black spot formation Ref.
    ITO//NPB/Alq3/Mg: Ag Circular aggregates At 100% relative humidity for 2 h Humidity-induced crystallization of Alq3 [6]
    ITO/TPD/Alq3/Mg/Ag Rounded Voltage: 4.5 V (Current density: 3–5 mA/cm2) Particle [13]
    ITO/NPB/Alq3(Qd-doped) /Alq3/Al Round with a nucleus in the center Voltage: 5 V (Current density: 5 mA/cm2) Concentrated current [15]
    ITO/PEDOT: PSS/PPV/ (Ca/Ag) Round with a nucleus in the center 20℃/50% RH Particle/Pinhole [16-18]
    ITO/CuPc/NPD/Alq3/ Mg: Ag Circumferential and raised at the center nucleus Exposure to the air Pinhole [19]
    ITO/CuPc/NPD/Alq3/Li/Al Gray ring around the core area 75% RH Permeated with oxygen Particle [20]
    ITO/ PEDOT: PSSLEP/BaAl Circular black spot (25–80)℃ (50–90)% RH Pinhole [21]
    ITO/Alq3/LiF/Al Gray ring around the core area 20℃/50% RH Voltage: (2.5–6.5)V Pinhole [23]
    ITO/PEDOT: PSS/LEP/ BaAl Gray ring around the core area Voltage: 4 V 50% RH Pinhole [24]
    ITO/MEH-PPV/Al Circumferential and raised at the center nucleus Current density: 100 mA/cm2 Surface defects High current density [27]
    ITO/a-NPD/Alq3/Al Circumferential and raised at the center nucleus Voltage: 6–10 V (Current density: 500 mA/cm2) High current density [28]
    ITO/a-NPB/Alq3/Al Domed Voltage: 32 V Roughness of ITO surface [29]
    ITO/PEDOT: PSS/polyfluorene/Al Black dot with white outer ring H2O/O2 < 0.01 ppm Voltage: 3.2 V Roughness of ITO surface High current density [30]
    Ag/PEDOT: PSS/MEH-PPV/Alq3/LiF/Al Sparkling Voltage: 5 V (Current density: 150 mA/cm2) High current density [31]
    ITO/TPD/ Alq3/Al Corrugated High voltage density: 3×106 V/cm High current density [32]
    下载: 导出CSV

    表  2   薄膜封装阻隔性能总结

    Table  2   Summary of the barrier properties of thin film encapsulation

    Materials Fabrication method Fabrication condition and materials Thickness/nm Test temperature/(℃) and humidity/ RH(%) WVTR/(g/m2∙day) Ref.
    SiNx PE-CVD (Ar/SiH4/N2/NH3) RT, Plasma 100 60/85 2×10-2 [67]
    Al2O3/TiO2 PE-ALD (TMA/TDMAT/O2)100℃ (22.1/0.225)×123 60/90 9.16×10-5 [69]
    Al2O3/ZrO2 RP-ALD (TMA/TEMAZr/O2) 225℃, Plasma 100 50/50 9.9×10-4 [70]
    (Al2O3/Parylene)3 ALD/CVD (TMA/H2O/N2/Parylene) 60℃ 1590 38/100 < 10-5 [75]
    Al2O3 ALD (TMA/H2O)120℃ 25 38 /85 1.7×10-5 [77]
    Al2O3–PI hybrid ALI (TMA/PI/H2O/Ar)100℃ 22 ± 2 85/85 < 10−7 [77]
    Al2O3 ALD (TMA/O3)100℃ 50 50/50 2.0×10-5 [78]
    Al2O3 PE-ALD (TMA/O2)100℃, Plasma 50 50/50 3.0×10-4 [78]
    Al2O3 ALD (TMA/O3)80℃ 60 20/60 8.7×10-6 [79]
    Al2O3 PE-ALD (TMA/ O2)100℃, Plasma 50 60/90 3.8×10-4 [80]
    SiNx ICP-CVD (SiH4/N2/Ar)40℃, Plasma 100 38/100 5×10−2 [81]
    SiNx PE-CVD (SiH4/N2/NH3) 180℃, Plasma 500 85/85 3×10−2 [82]
    SiNx L-PECVD (SiH4/NH3/He) 85℃, Plasma/Ion beam 300 37.8/100 5.0×10-5 [84]
    Al2O3/SiOx ALD (TMA/Silanol/H2O) 175℃ 26/60 RT/100 5×10-5 [85]
    Al2O3/SiNx: H PE-ALD/ PE-CVD (TMA/O2)25℃, Plasma (SiH4/N2/NH3)110℃, Plasma 40/300 20/50 4×10-6 [86]
    SiNx/SiOx PE-CVD (SiH4/NH/N2O)250℃ - - 1.0×10-2 [87]
    Parylene/SiNx/SiOx PE-CVD (SiH4/NH/N2O /Parylene)80℃, Preheating 120℃ 150/50/50 25/40 5.2×10-3 [87]
    3(SiOx/SiNx)+Parylene +3(SiOx/SiNx stacks) PE-CVD (SiH/NH/N2O/Parylene) 80℃/120℃ 750 25/40 2.5× 10-7 [87]
    下载: 导出CSV
  • [1]

    Turak A. Interfacial degradation in organic optoelectronics[J]. Rsc Advances, 2013, 3(18): 6188-6225. DOI: 10.1039/c2ra22770c

    [2]

    Akkerman H B, Weijer P, Verstegen E, et al. Sub-micron pinhole detection in the cathode of organic light-emitting diodes[J]. Organic Electronics, 2017, 44: 263-270. DOI: 10.1016/j.orgel.2017.02.028

    [3]

    Lim S F, WANG W, Chua S J. Understanding dark spot formation and growth in organic light emitting devices by controlling pinhole size and shape[J]. Advanced Functional Materials, 2002, 12(8): 513-518. DOI: 10.1002/1616-3028(20020805)12:8<513::AID-ADFM513>3.0.CO;2-7

    [4]

    TANG C W, VanSlyke S A. Organic electroluminescent diodes[J]. Applied Physics Letters, 1987, 51(12): 913-915. DOI: 10.1063/1.98799

    [5]

    HAN E M, Do L M, Yamamoto N, et al. Crystallization of organic thin films for electroluminescent devices[J]. Thin Solid Films, 1996, 273(1-2): 202-208. DOI: 10.1016/0040-6090(95)06782-5

    [6]

    Aziz H, Popovic Z, XIE S, et al. Humidity-induced crystallization of tris (8-hydroxyquinoline) aluminum layers in organic light-emitting devices[J]. Applied Physics Letters, 1998, 72(7): 756-758. DOI: 10.1063/1.120867

    [7]

    Do L M, Oyamada M, Koike A, et al. Morphological change in the degradation of Al electrode surfaces of electroluminescent devices by fluorescence microscopy and AFM[J]. Thin Solid Films, 1996, 273(1-2): 209-213. DOI: 10.1016/0040-6090(95)06781-7

    [8]

    Do L M, Han E M, Niidome Y, et al. Observation of degradation processes of Al electrodes in organic electroluminescence devices by electroluminescence microscopy, atomic force microscopy, scanning electron microscopy, and Auger electron spectroscopy[J]. Journal of Applied Physics, 1994, 76(9): 5118-5121. DOI: 10.1063/1.357224

    [9]

    Cumpston B H, Jensen K F. Electromigration of aluminum cathodes in polymer-based electroluminescent devices[J]. Applied Physics Letters, 1996, 69(25): 3941-3943. DOI: 10.1063/1.117577

    [10]

    Bulle-Lieuwma C W T, van de Weijer P. 3D-TOFSIMS characterization of black spots in polymer light emitting diodes[J]. Applied Surface Science, 2006, 252(19): 6597-6600. DOI: 10.1016/j.apsusc.2006.02.103

    [11]

    Liew Y F, Aziz H, HU N X, et al. Investigation of the sites of dark spots in organic light-emitting devices[J]. Applied Physics Letters, 2000, 77(17): 2650-2652. DOI: 10.1063/1.1320459

    [12]

    Sudheendran Swayamprabha S, Dubey D K, Yadav R A K, et al. Approaches for long lifetime organic light emitting diodes[J]. Advanced Science, 2021, 8(1): 2002254. DOI: 10.1002/advs.202002254

    [13]

    McElvain J, Antoniadis H, Hueschen M R, et al. Formation and growth of black spots in organic light-emitting diodes[J]. Journal of Applied Physics, 1996, 80(10): 6002-6007. DOI: 10.1063/1.363598

    [14]

    Azrain M M, Mansor M R, Fadzullah S, et al. Analysis of mechanisms responsible for the formation of dark spots in organic light emitting diodes (OLEDs): a review[J]. Synthetic Metals, 2018, 235: 160-175. DOI: 10.1016/j.synthmet.2017.12.011

    [15]

    Kawaharada M, Ooishi M, Saito T, et al. Nuclei of dark spots in organic EL devices: detection by DFM and observation of the microstructure by TEM[J]. Synthetic Metals, 1997, 91(1-3): 113-116. DOI: 10.1016/S0379-6779(97)03989-1

    [16]

    LIM S F, KE L, WANG W, et al. Correlation between dark spot growth and pinhole size in organic light-emitting diodes[J]. Applied Physics Letters, 2001, 78(15): 2116-2118. DOI: 10.1063/1.1364658

    [17]

    SHUANG F L, WANG W, Chua S J. Degradation of organic light-emitting devices due to formation and growth of dark spots[J]. Materials Science and Engineering B, 2001, 85(2-3): 154-159. DOI: 10.1016/S0921-5107(01)00599-2

    [18]

    WANG W, Lim S F, Chua S J. Bubble formation and growth in organic light-emitting diodes composed of a polymeric emitter and a calcium cathode[J]. Journal of Applied Physics, 2002, 91(9): 5712-5715. DOI: 10.1063/1.1467395

    [19]

    Kolosov D, English D S, Bulovic V, et al. Direct observation of structural changes in organic light emitting devices during degradation[J]. Journal of Applied Physics, 2001, 90(7): 3242-3247. DOI: 10.1063/1.1389760

    [20]

    Schaer M, F Nüesch, Berner D, et al. Water vapor and oxygen degradation mechanisms in organic light emitting diodes[J]. Advanced Functional Materials, 2001, 11(2): 116-121. DOI: 10.1002/1616-3028(200104)11:2<116::AID-ADFM116>3.0.CO;2-B

    [21]

    Okada T, Yoshida A, Tsuji T. Dark spot growth and its acceleration factor in organic light-emitting diodes with single barrier structure[J]. Japanese Journal of Applied Physics, 2017, 56(6): 060305. DOI: 10.7567/JJAP.56.060305

    [22]

    Scholz S, Kondakov D, Bjrn Lüssem, et al. Degradation mechanisms and reactions in organic light-emitting devices[J]. Chemical Reviews, 2015, 115(16): 8449. DOI: 10.1021/cr400704v

    [23]

    Van de Weijer P, Lu K, Janssen R R, et al. Mechanism of the operational effect of black spot growth in OLEDs[J]. Organic Electronics, 2016, 37: 155-162. DOI: 10.1016/j.orgel.2016.05.037

    [24]

    Van de Weijer P, Bouten P C P, Fledderus H, et al. Mechanistic study on black and grey spot growth in OLEDs performed on laser-ablated pinholes in the cathode[J]. Organic Electronics, 2017, 42: 59-65. DOI: 10.1016/j.orgel.2016.12.025

    [25]

    Papadimitrakopoulos F, ZHANG X M, Higginson K A. Chemical and morphological stability of aluminum tris (8-hydroxyquinoline)(Alq/sub 3/): effects in light-emitting devices[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1998, 4(1): 49-57. DOI: 10.1109/2944.669465

    [26]

    Png Ruiqi, Chia Perqjon, Sivaramakrishnan Sankaran, et al. Electromigration of the conducting polymer in organic semiconductor devices and its stabilization by cross-linking[J]. Applied Physics Letters, 2007, 91(1): 13511-13511. DOI: 10.1063/1.2749178

    [27]

    Fujihira M, Do L M, Koike A, et al. Growth of dark spots by interdiffusion across organic layers in organic electroluminescent devices[J]. Applied Physics Letters, 1996, 68(13): 1787-1789. DOI: 10.1063/1.116667

    [28]

    Kim S Y, Kim K Y, Tak Y H, et al. Dark spot formation mechanism in organic light emitting diodes[J]. Applied Physics Letters, 2006, 89(13): 132108. DOI: 10.1063/1.2357568

    [29]

    Melpignano P, Baron-Toaldo A, Biondo V, et al. Mechanism of dark-spot degradation of organic light-emitting devices[J]. Applied Physics Letters, 2005, 86(4): 041105. DOI: 10.1063/1.1852706

    [30]

    GAO L, Kerr J B, Johnson S. Dark spot formation relative to ITO surface roughness for polyfluorene devices[J]. Synthetic Metals, 2004, 144(1): 1-6. DOI: 10.1016/j.synthmet.2004.01.011

    [31]

    Czerw R, Carroll D L, Woo H S, et al. Nanoscale observation of failures in organic light-emitting diodes[J]. Journal of Applied Physics, 2004, 96(1): 641-644. DOI: 10.1063/1.1759398

    [32]

    ZHOU X, HE J, LIAO L, et al. Real-time observation of temperature rise and thermal breakdown processes in organic LEDs using an IR imaging and analysis system[J]. Advanced Materials, 12(4): 265-269. DOI: 10.1002/(SICI)1521-4095(200002)12:4<265::AID-ADMA265>3.0.CO;2-L

    [33]

    WU C C, WU C I, Sturm J C J, et al. Surface modification of indium tin oxide by plasma treatment : an effective method to improve the efficiency, brightness, and reliability of organic light emitting devices[J]. Applied Physics Letters, 1997, 70(11): 1348-1350. DOI: 10.1063/1.118575

    [34]

    LU H T, Yokoyama M. Plasma preparation on indium-tin-oxide anode surface for organic light emitting diodes[J]. Journal of Crystal Growth, 2004, 260(1/2): 186-190.

    [35]

    Mason M G, HUNG L S, TANG C W, et al. Characterization of treated indium-tin-oxide surfaces used in electroluminescent devices[J]. Journal of Applied Physics, 1999, 86(3): 1688-1692. DOI: 10.1063/1.370948

    [36]

    Phatak R, Tsui T Y, Aziz H. Dependence of dark spot growth on cathode/organic interfacial adhesion in organic light emitting devices[J]. Journal of Applied Physics, 2012, 111(5): 756.

    [37]

    Ryu S Y, Noh J H, Hwang B H, et al. Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode[J]. Applied Physics Letters, 2008, 92(2): 15.

    [38]

    Grandin H M, Griffiths K, Norton P R. Plasma treatment of the Mg: Ag/tris-(8-hydroxyquinoline) aluminum interface in OLEDs: effects on adhesion and performance[J]. Applied Surface Science, 2004, 230: 163-171. DOI: 10.1016/j.apsusc.2004.02.028

    [39]

    Azrain M M, Mansor M R, Omar G, et al. Effect of high thermal stress on the organic light emitting diodes (OLEDs) performances[J]. Synthetic Metals, 2019, 247: 191-201. DOI: 10.1016/j.synthmet.2018.12.008

    [40]

    McEwan J A, Clulow A J, Nelson A, et al. Dependence of organic interlayer diffusion on glass-transition temperature in OLEDs[J]. ACS Applied Materials & Interfaces, 2017, 9(16): 14153-14161.

    [41]

    Nenna G, Flaminio G, Fasolino T, et al. A study on thermal degradation of organic LEDs using IR imaging[C]//Macromolecular Symposia, 2007, 247(1): 326-332.

    [42]

    YIN S W, SHUAI Z, WANG Y. A quantitative structure-property relationship study of the glass transition temperature of OLED materials[J]. Journal of Chemical Information and Computer Sciences, 2003, 43(3): 970-977. DOI: 10.1021/ci034011y

    [43]

    Smith Arthur R G, Ruggles Jeremy L, Cavaye Hamish, et al. Investigating morphology and stability of fac-tris (2-phenylpyridyl)iridium(Ⅲ) films for OLEDs[J]. Advanced Functional Materials, 2011, 21(12): 2225-2231. DOI: 10.1002/adfm.201002365

    [44]

    Davidson Hall T, Aziz H. A comparison of the effect of joule heating vs thermal annealing on the morphology of typical hole transport layers in organic light emitting devices[C]//Organic Light Emitting Materials and Devices XIX of SPIE, 2015, 9566: 140-146.

    [45]

    Slyke S V, CHEN C H, TANG C W. Organic electroluminescent devices with improved stability[J]. Applied Physics Letters, 1998, 69(15): 2160-2162.

    [46]

    Carrard M, Goncalves C S, SI A L, et al. Improved stability of interfaces in organic light emitting diodes with high Tg materials and self-assembled monolayers[J]. Thin Solid Films 1999, 352: 189. DOI: 10.1016/S0040-6090(99)00322-3

    [47]

    Cho H Y, Park L S, Han Y S, et al. High-Tg N-Triarylamine derivatives as a hole injecting layer in organic light-emitting diodes[J]. Molecular Crystals and Liquid Crystals, 2009, 499(1): 323-332.

    [48]

    Liew Y F, ZHU F, CHUA S J. Effect of organic layer combination on dark spot formation in organic light emitting devices[J]. Chemical Physics Letters, 2004, 394(4-6): 275-279. DOI: 10.1016/j.cplett.2004.07.023

    [49]

    Seo H K, Park M H, Kim Y H, et al. Laminated graphene films for flexible transparent thin film encapsulation[J]. ACS Applied Materials & Interfaces, 2016, 8(23): 14725-14731.

    [50]

    Wegler B, Schmidt O, Hensel B. Influence of PEDOT: PSS on the effectiveness of barrier layers prepared by atomic layer deposition in organic light emitting diodes[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2015, 33(1): 01A147.

    [51]

    KIM E, HAN Y, KIM W, et al. Thin film encapsulation for organic light emitting diodes using a multi-barrier composed of MgO prepared by atomic layer deposition and hybrid materials[J]. Organic Electronics, 2013, 14(7): 1737-1743. DOI: 10.1016/j.orgel.2013.04.011

    [52]

    LI Y, XIONG Y, YANG H, et al. Thin film encapsulation for the organic light-emitting diodes display via atomic layer deposition[J]. Journal of Materials Research, 2020, 35(7): 681-700. DOI: 10.1557/jmr.2019.331

    [53]

    Yersak A S, Lee Y C. Probabilistic distributions of pinhole defects in atomic layer deposited films on polymeric substrates[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2016, 34(1): 01A149.

    [54]

    Uchida H, Yamashita M. Pinhole defect evaluation of TiN films prepared by dry coating process[J]. Vacuum, 2000, 59(1): 321-329. DOI: 10.1016/S0042-207X(00)00285-2

    [55]

    Miikkulainen V, Leskelä M, Ritala M, et al. Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends[J]. Journal of Applied Physics, 2013, 113(2): 2.

    [56]

    WAN Z, ZHANG T F, LEE H B R, et al. Improved corrosion resistance and mechanical properties of CrN hard coatings with an atomic layer deposited Al2O3 interlayer[J]. ACS Applied Materials & Interfaces, 2015, 7(48): 26716-26725.

    [57]

    Jen S H, Bertrand J A, George S M. Critical tensile and compressive strains for cracking of Al2O3 films grown by atomic layer deposition[J]. Journal of Applied Physics, 2011, 109(8): 084305. DOI: 10.1063/1.3567912

    [58]

    Ylivaara O M E, LIU X, Kilpi L, et al. Aluminum oxide from trimethylaluminum and water by atomic layer deposition: the temperature dependence of residual stress, elastic modulus, hardness and adhesion[J]. Thin Solid Films, 2014, 552: 124-135. DOI: 10.1016/j.tsf.2013.11.112

    [59]

    Lewis J. Material challenge for flexible organic devices[J]. Materials Today, 2006, 9(4): 38-45. DOI: 10.1016/S1369-7021(06)71446-8

    [60]

    Jen S H, George S M, McLean R S, et al. Alucone interlayers to minimize stress caused by thermal expansion mismatch between Al2O3 films and Teflon substrates[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 1165-1173.

    [61]

    García A, Álvarez S, Riera F, et al. Water and hexane permeate flux through organic and ceramic membranes: effect of pretreatment on hexane permeate flux[J]. Journal of membrane science, 2005, 253(1-2): 139-147. DOI: 10.1016/j.memsci.2004.11.030

    [62]

    Carcia P F, McLean R S, Reilly M H, et al. Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers[J]. Applied Physics Letters, 2006, 89(3): 913.

    [63]

    Maindron T, Jullien T, André A. Defect analysis in low temperature atomic layer deposited Al2O3 and physical vapor deposited SiO barrier films and combination of both to achieve high quality moisture barriers[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2016, 34(3): 031513.

    [64]

    HAN Y C, KIM E, KIM W, et al. A flexible moisture barrier comprised of a SiO2-embedded organic–inorganic hybrid nanocomposite and Al2O3 for thin-film encapsulation of OLEDs[J]. Organic Electronics, 2013, 14(6): 1435-1440. DOI: 10.1016/j.orgel.2013.03.008

    [65]

    Choi H, Shin S, Jeon H, et al. Fast spatial atomic layer deposition of Al2O3 at low temperature (< 100℃) as a gas permeation barrier for flexible organic light-emitting diode displays[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2016, 34(1): 01A121.

    [66]

    Rückerl A, Zeisel R, Mandl M, et al. Characterization and prevention of humidity related degradation of atomic layer deposited Al2O3[J]. Journal of Applied Physics, 2017, 121(2): 025306. DOI: 10.1063/1.4973583

    [67]

    Carcia P F, McLean R S, Groner M D, et al. Gas diffusion ultrabarriers on polymer substrates using Al2O3 atomic layer deposition and SiN plasma-enhanced chemical vapor deposition[J]. Journal of Applied Physics, 2009, 106(2): 023533. DOI: 10.1063/1.3159639

    [68]

    Singh A K, Graham S. Ultrabarrier films for packaging flexible electronics: examining the role of thin-film technology[J]. IEEE Nanotechnology Magazine, 2018, 13(1): 30-36.

    [69]

    KIM L H, JEONG Y J, AN T K, et al. Optimization of Al2O3/TiO2 nanolaminate thin films prepared with different oxide ratios, for use in organic light-emitting diode encapsulation, via plasma-enhanced atomic layer deposition[J]. Physical Chemistry Chemical Physics, 2016, 18(2): 1042-1049. DOI: 10.1039/C5CP06713H

    [70]

    Behrendt A, Meyer J, van de Weijer P, et al. Stress management in thin-film gas-permeation barriers[J]. ACS Applied Materials & Interfaces, 2016, 8(6): 4056-4061.

    [71]

    Meyer J, Schneidenbach D, Winkler T, et al. Reliable thin film encapsulation for organic light emitting diodes grown by low-temperature atomic layer deposition[J]. Applied Physics Letters, 2009, 94(23): 157.

    [72]

    Moro L L, Krajewski T A, Rutherford N M, et al. Process and design of a multilayer thin film encapsulation of passive matrix OLED displays[C]//Organic Light-Emitting Materials and Devices VII. of SPIE, 2004, 5214: 83-93.

    [73]

    Park J S, CHAE H, CHUNG H K, et al. Thin film encapsulation for flexible AM-OLED: a review[J]. Semiconductor Science Technology, 2011, 26(3): 034001. DOI: 10.1088/0268-1242/26/3/034001

    [74]

    Ghosh A P, Gerenser L J, Jarman C M, et al. Thin-film encapsulation of organic light-emitting devices[J]. Applied Physics Letters, 2005, 86(22): 913.

    [75]

    WU J, FEI F, WEI C, et al. Efficient multi-barrier thin film encapsulation of OLED using alternating Al2O3 and polymer layers[J]. Rsc Advances, 2018, 8(11): 5721-5727. DOI: 10.1039/C8RA00023A

    [76]

    YOON K H, KIM H S, HAN K S, et al. Extremely high barrier performance of organic-inorganic nanolaminated thin films for organic light-emitting diodes[J]. Acs Applied Materials & Interfaces, 2017, 9(6): 5399-5408.

    [77]

    LEE L, YOON K H, JUNG J W, et al. Ultra gas-proof polymer hybrid thin layer[J]. Nano Letters, 2018, 18(9): 5461-5466. DOI: 10.1021/acs.nanolett.8b01855

    [78]

    Franke S, Baumkötter M, Monka C, et al. Alumina films as gas barrier layers grown by spatial atomic layer deposition with trimethylaluminum and different oxygen sources[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2017, 35(1): 01B117.

    [79]

    YANG Y Q, DUAN Y, CHEN P, et al. Realization of thin film encapsulation by atomic layer deposition of Al2O3 at low temperature[J]. The Journal of Physical Chemistry C, 2013, 117(39): 20308-20312. DOI: 10.1021/jp406738h

    [80]

    KIM L H, KIM K, Park S, et al. Al2O3/TiO2 nanolaminate thin film encapsulation for organic thin film transistors via plasma-enhanced atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6731-6738.

    [81]

    KIM H K, KIM S W, KIM D G, et al. Thin film passivation of organic light emitting diodes by inductively coupled plasma chemical vapor deposition[J]. Thin Solid Films, 2007, 515(11): 4758-4762. DOI: 10.1016/j.tsf.2006.11.030

    [82]

    HUANG W, WANG X, SHENG M, et al. Low temperature PECVD SiNx films applied in OLED packaging[J]. Materials Science and Engineering: B, 2003, 98(3): 248-254. DOI: 10.1016/S0921-5107(03)00045-X

    [83]

    Nagai M. Defects of passivation films for color-filter-based OLED devices: Effects on dark spot formation[J]. Journal of The Electrochemical Society, 2006, 154(2): J65.

    [84]

    Yun S J, Abidov A, Kim S, et al. Water vapor transmission rate property of SiNx thin films prepared by low temperature (< 100℃) linear plasma enhanced chemical vapor deposition[J]. Vacuum, 2018, 148: 33-40. DOI: 10.1016/j.vacuum.2017.10.036

    [85]

    Dameron A A, Davidson S D, Burton B B, et al. Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition[J]. The Journal of Physical Chemistry C, 2008, 112(12): 4573-4580. DOI: 10.1021/jp076866+

    [86]

    Keuning W, Van de Weijer P, Lifka H, et al. Cathode encapsulation of organic light emitting diodes by atomic layer deposited Al2O3 films and Al2O3/α-SiNx: H stacks[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2012, 30(1): 01A131.

    [87]

    CHEN T N, WU D S, WU C C, et al. Improvements of permeation barrier coatings using encapsulated parylene interlayers for flexible electronic applications[J]. Plasma Processes and Polymers, 2007, 4(2): 180-185. DOI: 10.1002/ppap.200600158

  • 期刊类型引用(7)

    1. 闫梦婷. 有机蒙脱土/聚氯乙烯纳米复合改性沥青性能研究. 山西交通科技. 2024(03): 14-17+34 . 百度学术
    2. 钱荧辉,赵长森. 聚合度对悬浮PVC热性能的影响. 塑料. 2021(02): 118-122+135 . 百度学术
    3. 王莉,哈及尼沙,李凤和,李效文,姚日生. 季铵化聚丙烯酸树脂Ⅳ交联型骨架片的制备及防滥用性能考察. 中国医药工业杂志. 2021(09): 1208-1214+1223 . 百度学术
    4. 付春生,齐延红,张龙霞,肖霄,于宏伟. 二维红外光谱法分析聚酰胺-66晶区/非晶区结构. 理化检验(化学分册). 2019(04): 414-419 . 百度学术
    5. 刘卫华,林玉柏,范有娟,史君坡,于宏伟. 聚酰胺-66的ν_(amide-Ⅲ)和ν_(amide-Ⅳ)三级红外光谱研究. 塑料科技. 2018(06): 66-72 . 百度学术
    6. 于宏伟,赵婷婷,侯腾硕,宗再兴,孙佳玥,张琳曼. 红外光谱技术对尼龙-66结构及性能的研究. 中国纤检. 2018(01): 89-92 . 百度学术
    7. 张文燕,申澳,郑雨倩,张巧云,李凤,高梦雅,王鑫鹏,于宏伟. 锦纶-66ν_(amide-Ⅰ)和ν_(amide-Ⅱ)三级红外光谱. 纺织科学与工程学报. 2018(04): 126-132 . 百度学术

    其他类型引用(5)

图(10)  /  表(2)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  1
  • PDF下载量:  11
  • 被引次数: 12
出版历程
  • 收稿日期:  2023-05-03
  • 修回日期:  2023-05-22
  • 刊出日期:  2024-11-19

目录

    /

    返回文章
    返回