基于非凸低秩张量分解和群稀疏总变分的高光谱混合噪声图像恢复

徐光宪, 王泽民, 马飞

徐光宪, 王泽民, 马飞. 基于非凸低秩张量分解和群稀疏总变分的高光谱混合噪声图像恢复[J]. 红外技术, 2024, 46(9): 1025-1034.
引用本文: 徐光宪, 王泽民, 马飞. 基于非凸低秩张量分解和群稀疏总变分的高光谱混合噪声图像恢复[J]. 红外技术, 2024, 46(9): 1025-1034.
XU Guangxian, WANG Zemin, MA Fei. Hyperspectral Mixed Noise Image Restoration Based on Non-Convex Low-Rank Tensor Decomposition and Group Sparse Total Variation[J]. Infrared Technology , 2024, 46(9): 1025-1034.
Citation: XU Guangxian, WANG Zemin, MA Fei. Hyperspectral Mixed Noise Image Restoration Based on Non-Convex Low-Rank Tensor Decomposition and Group Sparse Total Variation[J]. Infrared Technology , 2024, 46(9): 1025-1034.

基于非凸低秩张量分解和群稀疏总变分的高光谱混合噪声图像恢复

基金项目: 

国家科技攻关项目 2018YFB1403303

辽宁省基础研究项目 LJ2020JCL012

辽宁省教育厅科学研究面上项目 LJKZ0357

辽宁省科技厅自然科学基金计划面上项目 2023-MS-314

详细信息
    作者简介:

    徐光宪(1977-),男,博士,教授,硕导,主要研究方向信息处理,网络编码。E-mail: 5261009@qq.com

    通讯作者:

    王泽民(1998-),男,硕士,主要研究方向遥感图像处理。E-mail: 2370058920@qq.com

  • 中图分类号: TP751

Hyperspectral Mixed Noise Image Restoration Based on Non-Convex Low-Rank Tensor Decomposition and Group Sparse Total Variation

  • 摘要:

    高光谱图像(Hyperspectral Image,HSI)在采集的过程中会被大量混合噪声污染,会影响遥感图像后续应用的性能,因此从混合噪声中恢复干净的HSI成为了重要的预处理过程。在本文中,提出了一种基于非凸低秩张量分解和群稀疏总变分正则化的高光谱混合噪声图像恢复模型;一方面,采用对数张量核范数来逼近HSI的低秩特性,可以利用高光谱数据固有的张量结构,同时减少对较大奇异值的收缩以保留图像更多细节特征;另一方面,采用群稀疏总变分正则化来增强HSI的空间稀疏性和相邻光谱间的相关性。并采用ADMM(Alternating Direction Multiplier Method)算法求解,实验证明该算法易于收敛。在模拟和真实的高光谱图像实验中,与其他方法相比,该方法在去除HSI混合噪声方面具有更好的性能。

    Abstract:

    Hyperspectral images (HSIs) are polluted by a large amount of mixed noise during the acquisition process, which affects the performance of subsequent applications of remote sensing images. Therefore, restoring clean HSI from the mixed noise is an important preprocessing step. In this study, a hyperspectral mixed noise image restoration model based on nonconvex low-rank tensor decomposition and group-sparse total variational regularization is proposed. On the one hand, by using logarithmic tensor nuclear norm to approximate the low-rank characteristics of the HSI, the inherent tensor structure of hyperspectral data can be utilized, and the shrinkage of larger singular values can be reduced to preserve more detailed features of the image. On the other hand, the group sparse total variational regularization can be used to enhance the spatial sparsity of the HSI and correlation between adjacent spectra. ADMM algorithm is used to solve the problem, and an experiment shows that the algorithm converges easily. In simulated and real hyperspectral image experiments, this method performs better in removing HSI mixed noise when compared to other methods.

  • 图  1   Case1中各种算法去噪后第20波段对比

    Figure  1.   Comparison of the 20th band after denoising of various algorithms in Case1

    图  2   Case2中各种算法去噪后第58波段对比

    Figure  2.   Comparison of the 58th band after denoising of various algorithms in Case2

    图  3   Case1中各个波段的PSNR值和SSIM值

    Figure  3.   PSNR value and SSIM value of each band in Case1

    图  4   Case2中各个波段的PSNR值和SSIM值

    Figure  4.   PSNR value and SSIM value of each band in Case2

    图  5   Case3中各个波段的PSNR值和SSIM值

    Figure  5.   PSNR value and SSIM value of each band in Case3

    图  6   HYDICE Urban数据第109波段恢复图像比较

    Figure  6.   Comparison of restored images in the 109th band of HYDICE Urban data

    图  7   HYDICE Urban数据第109波段水平平均剖面比较

    Figure  7.   Comparison of the 109th band horizontal mean profile in HYDICE Urban data

    图  8   Case1中参数分析

    Figure  8.   Parameter analysis diagram in Case1

    图  9   模型在Case1中收敛情况

    Figure  9.   Model convergence in Case1

    表  1   Pavia city center数据集的不同去噪方法的定量评价结果

    Table  1   Quantitative evaluation results of different denoising methods in Pavia city center data sets

    Case Indexes Noise LRMR LRTV LRTDTV LRTDGS FRCTR-PnP NCLRGSTV
    Case 1 MPSNR 14.144 33.336 34.356 34.743 35.380 34.557 36.369
    MSSIM 0.2143 0.9341 0.9444 0.9457 0.9506 0.9370 0.9637
    MFSIM 0.5985 0.9590 0.9626 0.9646 0.9647 0.9630 0.9761
    MSAM 0.6676 0.0833 0.0545 0.0495 0.0637 0.1331 0.0514
    ERGAS 707.54 74.698 65.280 70.351 61.441 109.32 51.975
    Time/s - 43.046 23.234 61.463 47.482 371.04 71.641
    Case 2 MPSNR 14.118 33.175 34.291 34.710 35.294 34.251 36.232
    MSSIM 0.2142 0.9332 0.9439 0.9457 0.9496 0.9348 0.9632
    MFSIM 0.5976 0.9588 0.9627 0.9643 0.9710 0.9608 0.9757
    MSAM 0.6687 0.0846 0.0547 0.0494 0.0625 0.1304 0.0519
    ERGAS 707.93 75.787 65.678 61.582 59.506 108.85 52.485
    Time/s - 43.294 22.994 61.906 44.786 397.41 72.997
    Case 3 MPSNR 14.092 33.083 34.193 34.652 35.220 34.338 35.969
    MSSIM 0.2114 0.9330 0.9437 0.9454 0.9491 0.9356 0.9619
    MFSIM 0.5955 0.9587 0.9624 0.9641 0.9707 0.9618 0.9746
    MSAM 0.6720 0.0855 0.0553 0.0493 0.0641 0.1207 0.0538
    ERGAS 709.14 76.431 66.452 61.936 60.275 100.18 54.261
    Time/s - 43.680 22.733 61.790 45.851 373.44 77.096
    下载: 导出CSV
  • [1]

    Bioucas Dias J M, Plaza A, Camps Valls G, et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Trans. Geosci. Remote Sens. , 2013, 1: 6-36.

    [2]

    LI Hengchao, WANG Weiye, PAN Lei, et al. Robust capsule network based on maximum correntropy criterion for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 738-751. DOI: 10.1109/JSTARS.2020.2968930

    [3]

    DIAN R, LI S, FANG L. Learning a low tensor-train rank representation for hyperspectral image super-resolution[J]. IEEE Trans. Neural Netw. Learn. , Syst. , 2019, 30(9): 2672-2683. DOI: 10.1109/TNNLS.2018.2885616

    [4]

    Bioucas Dias J M, Plaza A, Dobigeon N, et al. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 354-379. DOI: 10.1109/JSTARS.2012.2194696

    [5]

    ZHANG Pengdan, NING Jifeng. Hyperspectral image denoising via group sparsity regularized hybrid spatio-spectral total variation[J]. Remote. Sens., 2022, 14: 2348. DOI: 10.3390/rs14102348

    [6]

    Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Trans. Image Process., 2006, 15(12): 3736-3745. DOI: 10.1109/TIP.2006.881969

    [7]

    Green A A, Berman M, Switzer P, et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(1): 65-74. DOI: 10.1109/36.3001

    [8]

    Candès E J, LI X, MA Y, et al. Robust principal component analysis?[J]. J. ACM, 2011, 58: 1-37.

    [9]

    GU S, ZHANG L, ZUO W, et al. Weighted nuclear norm minimization with application to image denoising[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014: 2862–2869.

    [10]

    HE W, ZHANG H, ZHANG L, et al. Hyperspectral image denoising via noise-adjusted iterative low-rank matrix approximation[J]. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens, . 2015, 8: 3050-3061.

    [11]

    Karami A, Yazdi M, Asli A Z. Noise reduction of hyperspectral images using kernel non-negative tucker decomposition[J]. IEEE J. Sel. Topics Signal Process. , 2011, 5(3): 487-493. DOI: 10.1109/JSTSP.2011.2132692

    [12]

    FAN H, CHEN Y, GUO Y, et al. Hyperspectral image restoration using low-rank tensor recovery[J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , 2017, 10(10): 4589-4604. DOI: 10.1109/JSTARS.2017.2714338

    [13]

    HE W, ZHANG H, ZHANG L, et al. Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration[J]. IEEE Trans. Geosci. Remote Sens. , 2016, 54(1): 178-188. DOI: 10.1109/TGRS.2015.2452812

    [14]

    WANG Y, PENG J, ZHAO Q, et al. Hyperspectral image restoration via total variation regularized low-rank tensor decomposition[J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2018, 11(4): 1227-1243. DOI: 10.1109/JSTARS.2017.2779539

    [15]

    FAN H, LI C, GUO Y, et al. Spatial–spectral total variation regularized low-rank tensor decomposition for hyperspectral image denoising[J]. IEEE Trans. Geosci. Remote Sens. , 2018, 56(10): 6196-6213. DOI: 10.1109/TGRS.2018.2833473

    [16]

    CHEN Y, HE W, Yokoya N, et al. Hyperspectral image restoration using weighted group sparsity-regularized low-rank tensor decomposition[J]. IEEE Transactions on Cybernetics, 2020, 50(8): 3556-3570. DOI: 10.1109/TCYB.2019.2936042

    [17]

    SHI Q, TANG X, YANG T, et al. Hyperspectral image denoising using a 3-D attention denoising network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(12): 10348-10363. DOI: 10.1109/TGRS.2020.3045273

    [18]

    WANG Z, SHAO Z, HUANG X, et al. SSCAN: a spatial–spectral cross attention network for hyperspectral image denoising[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.

    [19]

    ZHENG Y B, HUANG T Z, ZHAO X L, et al. Mixed noise removal in hyperspectral image via low-fibered-rank regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 734-749. DOI: 10.1109/TGRS.2019.2940534

    [20]

    Fazel M, Hindi H, Boyd S P. Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices[C]//Proc. IEEE Amer. Control Conf., 2003, 3: 2156-2162.

    [21]

    Mohan K, Fazel M. Iterative reweighted algorithms for matrix rank minimization[J]. J. Mach. Learn. Res., 2012, 13(1): 3441-3473.

    [22]

    DENG Y, DAI Q, LIU R, et al. Low-rank structure learning via nonconvex heuristic recovery[J]. IEEE Trans. Neural Netw. Learn. Syst., 2013, 24(3): 383-396. DOI: 10.1109/TNNLS.2012.2235082

    [23]

    DONG W, SHI G, HU X, et al. Nonlocal sparse and low-rank regularization for optical flow estimation[J]. IEEE Trans. Image Process. , 2014, 23(10): 4527-4538. DOI: 10.1109/TIP.2014.2352497

    [24]

    JI T Y, HUANG T Z, ZHAO X L, et al. A non-convex tensor rank approximation for tensor completion[J]. Applied Mathematical Modelling, 2017, 48: 410-422. DOI: 10.1016/j.apm.2017.04.002

    [25]

    Boyd S, Parikh N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Found. Trends Mach. Learn., 2011, 3(1): 1-122.

    [26]

    ZHANG Z, LIU D, Aeron S, et al. An online tensor robust PCA algorithm for sequential 2D data[C]//Proc. Int. Conf. Acoust., Speech, Signal Process., 2016: 2434-2438.

    [27]

    LU C, FENG J, CHEN Y, et al. Tensor robust principal component analysis: exact recovery of corrupted low-rank tensors via convex optimization[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 5249-5257.

    [28]

    GU S, ZHANG L, ZUO W, et al. Weighted nuclear norm minimization with application to image denoising[C]//Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2014: 2862-2869.

    [29]

    Aggarwal H K, Majumdar A. Hyperspectral image denoising using spatio-spectral total variation[J]. IEEE Geosci. Remote Sens. Lett. , 2016 13(3): 442-446.

    [30]

    HE W, ZHANG H, SHEN H, et al. Hyperspectral image denoising using local low-rank matrix recovery and global spatial–spectral total variation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3): 713-729. DOI: 10.1109/JSTARS.2018.2800701

    [31]

    XIE Q, ZHAO Q, MENG D, et al., Multispectral images denoising by intrinsic tensor sparsity regularization[C]//Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2016: 1692-1700.

    [32]

    LIU Y Y, ZHAO X L, ZHENG Y B, et al. Hyperspectral image restoration by tensor fibered rank constrained optimization and plug-and-play regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-17.

    [33]

    Eckstein J, YAO W. Understanding the convergence of the alternating direction method of multipliers: theoretical and computational perspectives[J]. Pacific Journal of Optimization, 2015, 11(4): 619-644.

    [34]

    LUO Y S, ZHAO X L, JIANG T X, et al. Hyperspectral mixed noise removal via spatial-spectral constrained unsupervised deep image prior[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 9435-9449. DOI: 10.1109/JSTARS.2021.3111404

    [35]

    LAI Z, WEI K, FU Y. Deep plug-and-play prior for hyperspectral image restoration[J]. Neurocomputing, 2022, 481: 281-293. DOI: 10.1016/j.neucom.2022.01.057

  • 期刊类型引用(3)

    1. 杨旭,李氡,段军勇,姚淼. 基于物探技术的矿区岩土自动化检测数据采集系统设计. 自动化与仪器仪表. 2024(03): 144-148 . 百度学术
    2. 戎靖,李入作,王杰,谢欣. 基于卡尔曼滤波算法的电机速度数据自动采集系统设计. 电子设计工程. 2024(22): 63-67 . 百度学术
    3. 韩颖. 基于卡尔曼滤波的MEMS陀螺噪声抑制算法设计与实现. 电子测试. 2021(19): 51-53+40 . 百度学术

    其他类型引用(1)

图(9)  /  表(1)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  6
  • PDF下载量:  22
  • 被引次数: 4
出版历程
  • 收稿日期:  2023-03-14
  • 修回日期:  2023-04-27
  • 刊出日期:  2024-09-19

目录

    /

    返回文章
    返回
    x 关闭 永久关闭

    尊敬的专家、作者、读者:

    端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

    感谢您对本刊的支持!

    《红外技术》编辑部

    2024年6月6日