留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于热成像的钢管混凝土脱空检测技术研究

刘豪 侯德鑫 郑刚兵 袁建锋 叶树亮

刘豪, 侯德鑫, 郑刚兵, 袁建锋, 叶树亮. 基于热成像的钢管混凝土脱空检测技术研究[J]. 红外技术, 2021, 43(11): 1119-1126.
引用本文: 刘豪, 侯德鑫, 郑刚兵, 袁建锋, 叶树亮. 基于热成像的钢管混凝土脱空检测技术研究[J]. 红外技术, 2021, 43(11): 1119-1126.
LIU Hao, HOU Dexin, ZHENG Gangbing, YUAN Jianfeng, YE Shuliang. Infrared Thermography-based Void Detection Technology for Concrete-filled Steel Tubes[J]. Infrared Technology , 2021, 43(11): 1119-1126.
Citation: LIU Hao, HOU Dexin, ZHENG Gangbing, YUAN Jianfeng, YE Shuliang. Infrared Thermography-based Void Detection Technology for Concrete-filled Steel Tubes[J]. Infrared Technology , 2021, 43(11): 1119-1126.

基于热成像的钢管混凝土脱空检测技术研究

基金项目: 

浙江省自然科学基金 LY18F030011

详细信息
    作者简介:

    刘豪(1995-),男,硕士研究生,研究方向:基于热成像的无损检测。E-mail:liuhaohean@163.com

    通讯作者:

    叶树亮(1973-),男,教授,研究方向:化工产品安全测试技术与仪器,工业零部件缺陷检测技术与设备,精密测量中部件信号处理与误差分析技术。E-mail:itmt_paper@126.com

  • 中图分类号: TU753

Infrared Thermography-based Void Detection Technology for Concrete-filled Steel Tubes

  • 摘要: 钢管混凝土结构因受施工工艺、混凝土收缩、超负荷承载等因素而产生脱空缺陷,使结构的承载能力下降。本文利用主动热成像技术对钢管混凝土的脱空缺陷进行了研究,并针对当前热成像脱空检测技术存在检测深度小,处理算法呈现效果不佳,无法定量检测,检测效率低等问题,提出了设计专用感应加热电源和线盘提高检测深度,热源反演算法消除加热非均匀性干扰,建立无缺陷仿真模型预测钢管混凝土表面的温度分布,取同一时刻的实验数据和仿真预测数据作差来提取脱空缺陷特征,以及检测参数优化实现定量检测的解决方法。通过多次重复实验表明,可检出壁厚为20 mm钢管混凝土内的脱空缺陷,并能确定缺陷形状和大小,有效提高了检测深度和检测效率。
  • 图  1  钢管混凝土结构

    Figure  1.  Concrete-filled steel tube structure

    图  2  检测系统示意图

    Figure  2.  Diagram of detection system

    图  3  检测模型传热示意图

    Figure  3.  Heat transfer diagram of detection model

    图  4  脱空区与非脱空区加热和冷却过程温度变化趋势

    Figure  4.  Temperature change trend in heating and cooling process between void area and sound area

    图  5  加热线盘

    Figure  5.  Heated probe

    图  6  加热非均匀性

    Figure  6.  Heating heterogeneity

    图  7  加热时间优化曲线

    Figure  7.  Heating time optimization curve

    图  8  冷却时间优化曲线

    Figure  8.  Cooling time optimization curve

    图  9  脱空区域提取效果

    Figure  9.  Extraction of void area

    图  10  实验样品

    Figure  10.  Experimental sample

    图  11  实验装置

    Figure  11.  Experimental equipment

    图  12  脱空缺陷检测效果

    Figure  12.  Detection effect of void defect

    表  1  材料的物性参数

    Table  1.   Material parameters

    Material Thermal conductivity/
    W·m-1·K-1
    Specific heat
    capacity/
    J·kg-1·K-1
    Density/
    kg·m-3
    Steel 49.8 465 7840
    Concrete(c30) 1.28 970 2410
    Air 0.0259 1005 1.205
    下载: 导出CSV
  • [1] 张西辰, 宋晓冰. 钢板混凝土(SC)组合结构的发展与研究现状[J]. 四川建筑科学研究, 2015, 41(1): 26-30. doi:  10.3969/j.issn.1008-1933.2015.01.006

    ZHANG Xichen, SONG Xiaobing. Research and application of steel concrete composite structure[J]. Sichuan Building Science, 2015, 41(1): 26-30. doi:  10.3969/j.issn.1008-1933.2015.01.006
    [2] 安东. 双钢板混凝土组合剪力墙发展及其承载力研究现状[J]. 城市建设理论研究, 2019, 302(20): 53-53. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJL201920045.htm

    AN Dong. Development and bearing capacity of double steel plate concrete composite shear wall[J]. Theoretical Research in Urban Construction, 2019, 302(20): 53-53. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJL201920045.htm
    [3] 陈志华, 姜玉挺, 张晓萌, 等. 钢管束组合剪力墙恢复力模型研究[J]. 地震工程与工程振动, 2017, 37(1): 115-122. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201701015.htm

    CHEN Zhihua, JIANG Yuting, ZHANG Xiaomeng, et al. Research on resilience model of steel tube bundle composite shear wall[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(1): 115-122. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201701015.htm
    [4] 周云, 裴熠麟, 刘蒙. 基于非接触式麦克风冲击共振测试的钢-混组合结构界面脱空损伤识别方法研究[J]. 地震工程与工程振动, 2020, 40(1): 67-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202001008.htm

    ZHOU Yun, PEI Yilin, LIU Meng. Non-contact diagnosis for interface debonding of steel-concrete composited structure by using impact resonance test with microphone[J]. Earthquake Engineering and Engineering Dynamics, 2020, 40(1): 67-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202001008.htm
    [5] 叶勇, 李威, 陈锦阳. 考虑脱空的方钢管混凝土短柱轴压性能有限元分析[J]. 建筑结构学报, 2015, 36(S1): 324-329. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2015S1050.htm

    YE Yong, LI Wei, CHEN Jinyang. FEA on compressive behavior of square CFST short columns with circumferential gap between concrete and tube[J]. Journal of Building Structures, 2015, 36(S1): 324-329. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2015S1050.htm
    [6] 史新伟. 超声波法检测钢管混凝土脱空量及快速修补技术研究[D]. 郑州: 郑州大学, 2009.

    SHI Xinwei. Research on the void size in concrete-filled steel tube by ultrasonic wave method and the rapid repairing techniques[D]. Zhengzhou: Zhengzhou University, 2009.
    [7] 段师剑, 王远传, 赵勇. 超声法检测钢管混凝土缺陷的分析与探讨[J]. 无损检测, 2018, 40(12): 74-78. doi:  10.11973/wsjc201812015

    DUAN Shijian, WANG Yuanchuan, ZHAO Yong. Analysis and discussion of steel pipe-encased concrete defects by ultrasonic inspection[J]. Nondestructive Testing, 2018, 40(12): 74-78. doi:  10.11973/wsjc201812015
    [8] 岳文军, 杨国强, 王栋, 等. 钢管混凝土脱粘的超声波检测模型试验[J]. 施工技术, 2016, 45(23): 151-155. https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS201623039.htm

    YUE Wenjun, YANG Guoqiang, WANG Dong, et al. Test and control technology and application of steel tube concrete arch bridge[J]. Construction Technology, 2016, 45(23): 151-155. https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS201623039.htm
    [9] 晏国顺, 张富家, 王旭明. 中子无损检测法在泸定水电站蜗壳脱空检测中的应用[J]. 水力发电, 2011, 37(5): 83-84, 88. https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD201105032.htm

    YAN Guoshun, ZHANG Fujia, WANG Xuming. Application of neutron non-destructive testing method in the void detection of spiral case in Luding Hydropower Station[J]. Water Power, 2011, 37(5): 83-84, 88. https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD201105032.htm
    [10] 张辉, 刘国庆, 刘枨, 等. 水电站钢衬混凝土结构脱空缺陷定量检测应用研究[J]. 同位素, 2017, 30(3): 194-199. https://www.cnki.com.cn/Article/CJFDTOTAL-TWSZ201703007.htm

    ZHANG Hui, LIU Guoqing, LIU Cheng, et al. Study on Application of quantitative detecting of inner cavity defect of concrete under steel plate lining of hydro-power plant[J]. Journal of Isotopes, 2017, 30(3): 194-199. https://www.cnki.com.cn/Article/CJFDTOTAL-TWSZ201703007.htm
    [11] 杨金. 基于HHT的钢管混凝土缺陷特征提取研究与FPGA实现[D]. 湘潭: 湖南科技大学, 2016.

    YANG Jin. Feature extraction from concrete-filled steel tube using HHT and FPGA implementation[D]. Xiangtan: Hunan University of Science and Technology, 2016.
    [12] Zimnoch M, Oliferuk W, Maj M. Estimation of defect depth in steel plate using lock-in IR thermography[J]. Geological Data Processing, 2010, 17: 156-159. http://yadda.icm.edu.pl/baztech/download/import/contents/BPB2-0048-0019-httpwww_actawm_pb_edu_plvol4no4zimnocholiferukmaj2009070.pdf
    [13] Cotic P, Kolaric D, Bosiljkov V B, et al. Determination of the applicability and limits of void and delamination detection in concrete structures using infrared thermography[J]. NDT & E International, 2015, 74(9): 87-93. http://smartsearch.nstl.gov.cn/paper_detail.html?id=7df88ae15f98281a4b18c7fea5110e29
    [14] 胡爽. 基于红外热像技术的钢管混凝土密实度缺陷检测探究[D]. 重庆: 重庆大学, 2016.

    HU Shuang, The research and detection on the density defects of the concrete-filled steel tubes based on the infrared thermal imaging technology[D]. Chongqing: Chongqing University, 2016.
    [15] Matovu M J, Farhidzadeh A, Salamone S. Damage assessment of steel-plate concrete composite walls by using infrared thermography: a preliminary study[J]. Journal of Civil Structural Health Monitoring, 2016, 6(2): 303-313. doi:  10.1007/s13349-016-0169-4
    [16] 王军文, 马少宁, 刘志勇, 等. 钢管混凝土脱空无损检测方法试验研究[J]. 石家庄铁道大学学报: 自然科学版, 2021, 34(2): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT202102007.htm

    WANG Junwen, MA Shaoning, LIU Zhiyong, et al. Experimental study on non-destructive testing methods of voids in concrete filled steel tube[J]. Journal of Shijiazhuang Tiedao University: Natural Science Edition, 2021, 34(2): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT202102007.htm
    [17] 张顺. 基于涡流热成像的钢管混凝土拱桥脱空检测试验研究[D]. 重庆: 重庆交通大学, 2019.

    ZHANG Shun. Research on void detection of concrete filled steel tubular arch bridge based on eddy current thermal imaging[D]. Chongqing: Chongqing Jiaotong University, 2019.
    [18] 陈禾, 秦迎, 陈劲, 等. 基于红外热成像法和超声波法的钢管混凝土无损检测技术试验研究[J]. 建筑结构, 2020, 50(S1): 890-895. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2020S1174.htm

    CHEN He, QIN Ying, CHEN Jin, et al. Experimental research on the non-destructive detecting technique on concrete-filled steel tube based on infrared thermal imaging method and ultrasonic method[J]. Building Structure, 2020, 50(S1): 890-895. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2020S1174.htm
    [19] 李晓希. 多层异种金属粘接结构内部缺陷热成像无损检测研究[D]. 成都: 电子科技大学, 2018.

    LI Xiaoxi. A research of thermography NDT for inner defect in multi-layer metal-to-metal bonded structure[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
    [20] 张绩松, 王晓娜, 侯德鑫, 等. 基于激光热成像的局部导热系数测试[J]. 激光与红外, 2020, 50(12): 1426-1432. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202012003.htm

    ZHANG Jisong, WANG Xiaona, HOU Dexin, et al. Local thermal conductivity measurement based on laser thermography[J]. Laser & Infrared, 2020, 50(12): 1426-1432. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202012003.htm
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  90
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-21
  • 修回日期:  2021-09-13
  • 刊出日期:  2021-11-20

目录

    /

    返回文章
    返回