Abstract:
To address the problems of low clarity and contrast of indistinct targets in traditional infrared and visible image-fusion algorithms, this study proposes a fusion method based on non-subsampled contourlet transform (NSCT) combined with a saliency map and region energy. First, an improved frequency-tuning (FT) method is used to obtain the infrared image saliency map, which is subsequently normalized to obtain the saliency map weight. A single-scale retinex (SSR) algorithm is then used to enhance the visible image. Second, NSCT is used to decompose the infrared and visible images, and a new fusion weight is designed based on the normalized saliency map and region energy to guide low-frequency coefficient fusion. This solves the problem of region-energy adaptive weighting being prone to introducing noise, and the improved "weighted Laplace energy sum" is used to guide the fusion of high-frequency coefficients. Finally, the fused image is obtained by inverse NSCT. Six groups of images were used to compare the proposed method with seven classical methods. The proposed method outperformed others in terms of information entropy, mutual information, average gradient, and standard deviation. Regarding spatial frequency, the first group of images was second best, and the remaining images exhibited the best results. The fusion images displayed rich information, high resolution, high contrast, and moderate brightness, demonstrating suitability for human observation, which verifies the effectiveness of this method.