导弹打击地面弱红外目标的数字孪生导引律

Digital Twin Guidance Law for Missile to Hit Weak Ground Infrared Target

  • 摘要: 当红外制导导弹攻击地面目标时,自然或人为因素会导致目标红外特征减弱或消失,致使导引头无法探测或间断探测目标,极大影响制导精度。为解决这一问题,提出一种导弹攻击地面弱红外目标的数字孪生导引律。根据红外导引头在物理世界的导引过程,在数字世界构建目标及导引律的孪生数字模型,通过仿真得到并保存制导全过程中各时间点上导弹运动及控制的状态参数,作为制导过程的数字孪生。实际引导中,当导引头无法得到测量信号时,它的数字孪生数据立即被激活接管导引头的工作,以导引头的孪生数据为控制系统提供加速度指令。仿真算例表明,导引头的数字孪生可在导引头无法捕获信号时,为控制系统提供机动指令对导弹实施精确引导。数字孪生导引律对红外伪装、红外干扰及恶劣气候具有鲁棒性,有广阔的应用前景。

     

    Abstract: When an infrared-guided missile attacks a ground target, natural or human factors can cause the infrared characteristics of the target to weaken or even disappear. The seeker cannot or intermittently detects the target, which significantly affects the guidance accuracy. To solve this problem, a digital twin guidance law is proposed for hitting a weak infrared target on the ground. On the basis of an infrared seeker in the physical world, digital twin models of the target and guidance laws are developed in the digital world. The state parameters of the missile motion and control in the guidance process at each point in time are obtained by simulation, and saved as the digital twin of the guidance process. During guidance process, when the seeker cannot obtain the measurement signal, its digital twin is activated immediately to take over and provide the control system with the acceleration order. Simulations show that the digital twin of the seeker can provide the missile control system with the maneuver order to accurately guide the missile when the infrared seeker is unable to capture the signal. The digital twin guidance law is robust against infrared camouflage, interference, and bad weather, and has broad application prospects.

     

/

返回文章
返回