锑化物中/中波双色红外探测器研究进展

张宏飞, 朱旭波, 李墨, 姚官生, 吕衍秋

张宏飞, 朱旭波, 李墨, 姚官生, 吕衍秋. 锑化物中/中波双色红外探测器研究进展[J]. 红外技术, 2022, 44(9): 904-911.
引用本文: 张宏飞, 朱旭波, 李墨, 姚官生, 吕衍秋. 锑化物中/中波双色红外探测器研究进展[J]. 红外技术, 2022, 44(9): 904-911.
ZHANG Hongfei, ZHU Xubo, LI Mo, YAO Guansheng, LYU Yanqiu. Research Progress of Mid-/Mid-Wavelength Dual-color Antimonide-based Infrared Detector[J]. Infrared Technology , 2022, 44(9): 904-911.
Citation: ZHANG Hongfei, ZHU Xubo, LI Mo, YAO Guansheng, LYU Yanqiu. Research Progress of Mid-/Mid-Wavelength Dual-color Antimonide-based Infrared Detector[J]. Infrared Technology , 2022, 44(9): 904-911.

锑化物中/中波双色红外探测器研究进展

基金项目: 

航空科学基金项目 20200024012002

详细信息
    作者简介:

    张宏飞(1980-),男,工程师,主要从事武器装备质量监督及进展研究。E-mail:zhf2313@163.com

  • 中图分类号: TN215

Research Progress of Mid-/Mid-Wavelength Dual-color Antimonide-based Infrared Detector

  • 摘要: 面对第三代红外探测器对多波段探测的需求,中/中波双色同时获取两个波段的目标信息,对复杂的背景进行抑制,可以有效排除干扰源的影响,提高了探测的准确性,增强了在人工及复杂背景干扰下的目标识别能力,因此中/中波双色探测器设计和制备最近快速发展起来。锑化铟红外探测器通过分光可实现两个中波波段的探测,锑化物Ⅱ类超晶格探测器通过能带结构设计实现多波段探测。本文阐述了锑化物中/中波双色红外探测器的主要技术路线和目前研究进展,与传统InSb双色探测器相比,中/中波双色超晶格红外器件用于红外成像探测具有鲜明的特点和优势,但需要在探测器结构设计、锑化物超晶格材料生长、阵列器件制备等方面进行进一步研究,以提高探测性能,满足工程化应用需求。
    Abstract: To meet the demand for third-generation infrared detectors in multi-band detection, a mid-/mid-wavelength dual-color detector can obtain target information in two bands simultaneously and suppress complex background; hence, it can effectively eliminate the influence of interference sources and improve the accuracy of detection, which enhances target recognition under artificial and complex background interference. The design and preparation of mid-/mid-wavelength dual-color detectors have recently developed rapidly. The InSb infrared detector can realize the detection of the mid-/mid-wavelength via light splitting, and the antimonide type-II superlattice detector realizes multi-band detection through the energy band structure design. This paper describes the main technical method and current research progress of antimonide mid-/mid-wavelength dual-color infrared detectors. Compared with traditional InSb dual-color detectors, mid-/mid-wavelength dual-color superlattice infrared devices have distinct characteristics and advantages for infrared imaging detection. However, further research on detector structure design, antimonide superlattice material growth, and array device preparation is required to improve the detection performance and meet the demands of engineering applications.
  • 有机电致发光器件(Organic Light Emitting Device,OLED)具有发光亮度高、响应时间短、可视范围大和可柔性化等优点,被称为“梦幻般的显示器”,被视为液晶显示后的下一代主流显示器,并初步应用于装饰和室内照明[1-6]。近年来,高性能顶发射器件逐渐成为研究热点,诸多科研工作者投身于实现高性能器件的研究中,目前主要从两个方面入手:一是新材料的研发,如新型有机发光分子材料[7];二是新结构的开发,如超薄结构[8]、量子阱结构[9]和和微腔结构[10]等。在微腔结构方面,主要是通过理论计算改变有机结构层厚度,进而调节器件的微腔长度,获得不同模数的微腔,使器件处于不同微腔加强区,从而提升器件性能。

    光学微腔是一种光学微型谐振腔,尺寸在光波长量级。有机微腔电致发光器件最早是日本九州大学在1993年完成的[11]。当前关于有机微腔发光的大部分研究致力于提升器件效率[12-14],而对具有微腔效应顶发射器件的色纯度及稳定性的研究存在不足。因此,本文在现有器件研究的基础上,通过引入二阶微腔结构[15-16],制备了一系列顶发射微型器件,验证二阶微腔长度范围内器件的光电性能,最终获得优化后的稳定绿光顶发射器件,实现标准绿光显示。

    本文所制备的顶发射器件,微腔结构为简单的FP(Fabry-Perot)微腔结构[17-19],底部全反射电极采用Ag,顶部光出射端采用半透明的金属阴极Mg/Ag作为半反射镜。器件各膜层通过蒸镀设备依次完成,主要膜层及所用材料见表 1,其中阳极为ITO,空穴注入层(Hole Injection Layer, HIL)为有机材料F16CuPc和NPB,F16CuPc为掺杂料;空穴传输层(Hole Transport Layer, HTL)为有机材料NPB;电子阻挡层(Electron Blocking Layer, EBL)为有机材料TCTA;有机发光层(Emitting Layer, EML)为有机材料mCP和Ir(ppy)3,mCP为绿色发光基质,Ir(ppy)3掺杂料;电子传输层(Electron Transport Layer, ETL)为有机材料Bphen和Liq,Liq为掺杂料;光输出耦合层(Capping Layer, CPL)为有机材料Alq3。器件中涉及的有机材料分子结构如图 1所示。

    表  1  器件主要膜层及所用材料
    Table  1.  Layers and materials of device
    Layer Material
    anode ITO
    HIL Copper(II)1, 2, 3, 4, 8, 9, 10, 11, 15, 16, 17, 18, 22, 23, 24, 25-hexadecafluoro-29H, 31H-phthalocyanine(F16CuPc)
    N, N'-Di-[(1-naphthyl)-N, N'-diphenyl]-1, 1'-biphenyl)-4, 4'-diamine (NPB)
    HTL N, N'-Di-[(1-naphthyl)-N, N'-diphenyl]-1, 1'-biphenyl)-4, 4'-diamine (NPB)
    EBL 4, 4', 4''-tris(carbazol-9-yl)-triphenylamine (TCTA)
    EML 1, 3-bis(9-carbazolyl)benzene(mCP)
    Iridium, tris[2-(2-pyridinyl-kN)phenyl-kC](Ir(ppy)3
    ETL 4, 7-Diphenyl-1, 10-phenanthroline(Bphen)
    8-hydroxyquinoline lithium(Liq)
    cathode Mg/Ag
    CPL 8-Hydroxyquinoline aluminum salt(Alq3
    下载: 导出CSV 
    | 显示表格
    图  1  器件中涉及的有机材料分子结构
    Figure  1.  Molecular structures of the materials in the OLED devices

    该器件采用云南北方奥雷德光电股份有限公司开发的硅基CMOS基板作为器件衬底,依次蒸镀各层有机材料,蒸发速率保持在0.1 nm/s,真空度保持在2×10-4 Pa。器件的亮度及光谱通过PR-655测量,电流和电压采用搭载Keithley 2400测试仪的测试系统进行测量。

    一般来说,顶发射器件都存在微腔效应,器件发出的光谱强度I(λ)如式(1)[20]

    $$ I\left( \lambda \right) = \frac{{\left( {1 + {R_{\text{h}}}} \right)\left[ {1 + {R_{\text{f}}} + 2\sqrt {{R_{\text{f}}}} \cos \left( {\frac{{4{\rm{ \mathsf{ π} }}Z}}{\lambda }} \right)} \right]}}{{1 + {R_{\text{f}}}{R_{\text{h}}} - 2\sqrt {{R_{\text{f}}}{R_{\text{h}}}} \cos \left( {\frac{{4{\rm{ \mathsf{ π} }}L}}{\lambda }} \right)}}{I_0}\left( \lambda \right) $$ (1)

    式中:Rf为全反射镜的反射率;Rh为半透明反射镜的反射率;I0(λ)为自由空间的光谱强度;L为器件微腔光学长度;Z为全反射镜与有机发光层之间的距离。其中,微腔的光学长度L计算式为:

    $$ L = \sum {{n_{\text{m}}}{d_{\text{m}}}} + {n_{{\text{ITO}}}}{d_{{\text{ITO}}}} + \left| {\frac{{{\lambda _q}}}{{4{\rm{ \mathsf{ π} }}}}\sum\limits_i {{\phi _i}\left( \lambda \right)} } \right| = q\frac{{{\lambda _q}}}{2} $$ (2)

    式中:nmdm分别为有机材料的折射率和厚度;nITOdITO分别为ITO的折射率和厚度;q(1, 2, 3, 4, …)是发射模的模(阶)数;λq是模(阶)数为q的共振发射波长;ϕt(λ)为光在有机界面/金属镜面之间的相移,i为阳极/有机界面或阴极/有机界面。由式(1)、(2)可知,通过调节有机材料膜层厚度,可以改变器件微腔长度,使腔模q的位置产生移动,从而改变微腔器件的出射光波长。为了使器件微腔的谐振波长与发光层电致发光谱的峰值波长相匹配以实现增益,利用公式(2)计算得到一阶腔长对应的有机层总厚度约为100 nm,二阶腔长对应的有机层总厚度约为250 nm。

    通过调整空穴传输层和电子阻挡层厚度,实验中制作了5种不同微腔长度的器件A~E,如图 2所示。其结构为:Si Substrate/Ag/ITO/ NPB: F16CuPc(10 nm, 3%)/NPB(x nm)/TCTA(y nm)/ mCP: Ir(ppy)3(40 nm, 6%)/ Bphen: Liq(30 nm, 40%)/ Mg/Ag(12 nm)/Alq3(35 nm),x表示空穴传输层(NPB)的膜层厚度,y表示电子阻挡层(TCTA)的膜层厚度。其中x分别为30、30、60、20、120,y分别为20、15、20、15、40,器件有机层厚度依次为130 nm、125 nm、160 nm、115 nm、240 nm。

    图  2  5种不同微腔长度器件结构图
    Figure  2.  Schematics of device structure with five microcavity lengths

    图 3为不同腔长器件EL光谱。器件A、B、C、D在524 nm处有一强峰,556 nm、552 nm、560 nm、560 nm处出现一弱峰,器件E为520 nm处唯一单峰。从图中可以看出,器件C→A→B→D→E长波一侧出现明显的窄化趋势,向短波一侧移动,出现蓝移,560 nm处的肩峰逐渐减弱至消失。这一现象是器件微腔效应导致的,根据腔量子电动力学效应,腔内光场的模式密度受到调制,在谐振波长处得到增强,而在其他波长处的受到抑制,光谱得到窄化[21]。微腔效应的强弱常通过半高宽(FWHM, full width at half maximum)来衡量,计算得到器件C→A→B→D→E半高宽从84 nm减小到33 nm,微腔效应逐渐增强。

    图  3  不同腔长器件EL光谱
    Figure  3.  EL spectrum of device with different cavity lengths

    不同腔长器件的发光性能如表 2所示。在A~E中,D在亮度、电流效率与外量子效率等方面表现较佳,B次之,C表现最差,而E色坐标偏移最小。这主要是因为,D位于一阶加强区,E位于二阶加强区,C远离加强区。可以看出,当器件腔长位于一阶加强区时,器件的光电效率会得到加强;当位于二阶加强区时,器件效率会低于一阶加强区[22-23],但器件色纯度明显高于一阶加强区,说明处于二阶加强区对器件的色纯度有显著的提升作用。

    表  2  不同腔长器件的光电特性
    Table  2.  Optoectronic performance of device with different cavity lengths
    Device Luminance/(cd/m2) Current efficiency/(cd/A) Peak wavelength/nm FWHM/nm External quantum efficiency/% CIEx, y Color shift[CIE 1931]
    A 6330 33.80 524 73 9.19% (0.3713, 0.6019) (0.1613, 0.1081)
    B 7439 39.73 524 70 10.59% (0.3601, 0.6110) (0.1501, 0.0990)
    C 2198 11.74 524 84 3.39% (0.3959, 0.5821) (0.1859, 0.1279)
    D 9123 48.72 524 66 12.75% (0.3436, 0.6243) (0.1336, 0.0857)
    E 5477 29.25 520 33 7.67% (0.2092, 0.7167) (0.0008, 0.0067)
    下载: 导出CSV 
    | 显示表格

    通过进一步的测试发现,制作得到的器件色坐标都具有很好的稳定性,如图 4所示。A~E色坐标CIEx,CIEy在低电压阶段经过短暂上升,电压达到2.8 V后,色坐标保持平稳。从整个变化情况来看,器件E色坐标出现了明显的突变,CIEx骤降到0.2左右,CIEy骤升到0.71左右,出现该现象的原因是器件A~D分别在556 nm、552 nm、560 nm、560 nm处存在一弱峰,导致色坐标产生偏离,发光时表现出黄绿光,而器件E为唯一单峰,在器件正常启亮后就表现出近乎接近标准绿光(0.21, 0.71)显示,如图 4(c)所示。这一结果也再次表明微腔长度处于二阶加强区,对器件发光色纯度有明显的提升作用。

    图  4  不同腔长器件色坐标变化
    Figure  4.  Color coordinate variation of device with different cavity lengths

    前述结果表明,当器件微腔长度位于二阶加强区时,器件的色纯度会得到明显提升。为了验证器件处于二阶加强区时,空穴传输层和电子阻挡层厚度是否对微腔长度改变起同等作用,制作了器件E1。在其他条件保持不变的情况下,空穴传输层厚度为40 nm,电子阻挡层厚度为120 nm。从表 3可以看出,E、E1在亮度、电流效率、外量子效率等性能方面表现相当,差异很小。通过光谱图(图 5)和色坐标(图 6)也可以看出,两者EL光谱基本重合,且CIEx、CIEy未发生较大改变。这一结果表明,空穴传输层与电子传输层厚度在微腔长度改变中作用相同,均能有效调节色纯度。

    表  3  不同HTL & EBL厚度器件的光电特性
    Table  3.  Optoectronic performance of device with different HTL & EBL thickness
    Device Luminance/(cd/m2) Current efficiency/(cd/A) Peak wavelength/nm FWHM/nm External quantum efficiency/% CIEx, y Color shift[CIE 1931]
    E 5477 29.25 520 33 7.67 (0.2092, 0.7167) (0.0008, 0.0067)
    E1 5261 28.09 520 32 7.58 (0.2079, 0.7173) (0.0021, 0.0073)
    下载: 导出CSV 
    | 显示表格
    图  5  不同HTL&EBL厚度器件EL光谱
    Figure  5.  EL spectra of device with different HTL&EBL thickness
    图  6  HTL&EBL厚度对色坐标影响
    Figure  6.  Color coordinate variation of device with different HTL&EBL thickness

    研究发现器件结构为Si Substrate/Ag/ITO/ NPB: F16CuPc(10 nm, 3%)/NPB(x nm)/TCTA(y nm)/ mCP: Ir(ppy)3(40 nm, 6%)/Bphen: Liq(30 nm, 40%)/ Mg/ Ag(12 nm)/Alq3(35 nm)的顶发射绿光器件,通过调节器件空穴传输层和电子阻挡层的厚度使器件处于第二阶微腔加强区,可以使光谱明显窄化,器件色纯度得到极大提升,进一步研究发现,空穴传输层与电子阻挡层在微腔长度改变中作用相同,均能有效调节色纯度。器件在腔长为240 nm时,能实现稳定的高色纯度绿光显示,正向出射绿光的色坐标达到了(0.2092,0.7167),接近标准绿光(0.21, 0.71),该结果对二阶腔长绿光器件的应用有较好的参考意义。

  • 图  1   N-P-N器件结构图:(a)顺序型和(b)同时型

    Figure  1.   Schematics of N-P-N sequential structure (a) and simultaneous structure (b)

    图  2   并列式中/中波双色红外探测器成像

    Figure  2.   A fisheye image of hybrid dual-color MWIR detector

    图  3   InSb中波双色红外探测器滤光片方案

    Figure  3.   Filter deposition pattern of InSb MWIR detector

    图  4   InAs/GaSb中波双色红外探测器滤光片方案

    Figure  4.   Filter deposition pattern of InAs/GaSb dual-color MWIR detector

    图  5   不同像元尺寸的双色超晶格阵列器件表面照片

    Figure  5.   Sections of completely processed dual-color InAs/GaSb FPA with different pixel pitch

    图  6   双色InAs/GaSb超晶格器件结构图

    Figure  6.   Schematic view of a dual-color InAs/GaSb SL detector pixel

    图  7   双色器件结构及互连示意图

    Figure  7.   Schematic view of dual-color InAs/GaSb SL detector

    图  8   niBin结构的双色超晶格材料能带图

    Figure  8.   The band structure of the niBin device

    表  1   各种锑化物中/中波双色红外焦平面探测器的性能参数

    Table  1   Specification of Mid-/Mid-Wavelength dual-color infrared detector performance

    Year Country Company or institute Materials Structure Array format Pixel Pitch/μm Working waveband/μm Peak Detectivity/
    (cm⋅Hz1/2⋅W-1)
    NETD/mK
    2012 Israel SemiConductor Devices (SCD) InSb Parallel 480×384 - - - -
    2017 Sweden IRnova AB InAs/GaSb Flat 320×256 30 3.0-3.5
    3.5-4.1
    - -
    2006 Germany Fraunhofer-Institute InAs/GaSb PIN Stack 384×288 40 3-4
    4-5
    - 29.5
    16.5
    2011 Germany Fraunhofer-Institute InAs/GaSb PIN Stack 384×288 30 3-4
    4-5
    - 17.9
    9.9
    2015 China Shanghai Institute of Technical Physics InAs/GaSb PIN Stack 320×256 30 3-4.2
    4.2-5.5
    6.0×1010
    2.3×109
    -
    2015 China Shanghai Institute of Technical Physics InAs/GaSb PIN Stack 640×512 30 3-4.5
    4.5-5.8
    7.73×1010
    7.81×1010
    -
    2017 China Institute of Semiconductors InAs/GaSb niBin Stack - - - - -
    下载: 导出CSV
  • [1]

    Rehm R, Walther M, Schmitz J, et al. Dual-colour thermal imaging with InAs/GaSb superlattices in mid-wavelength infrared spectral range[J]. Electronics Letters, 2006, 42(10): 577-578. DOI: 10.1049/el:20060878

    [2] 李庆, 白杰, 吕衍秋, 等. 基于Pt/CdS与InSb光伏型紫外-红外焦平面探测器的双色探测机理[J]. 红外与毫米波学报, 2017, 36(4): 385-388. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201704001.htm

    LI Qing, BAI Jie, LV Yanqiu, et al. Analysis of ultraviolet and infrared dual-color focal-plane array detector based on Pt/CdS and InSb junctions[J]. J. Infrared Millim. Waves, 2017, 36(4): 385-388. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201704001.htm

    [3] 胡伟达, 李庆, 陈效双, 等. 具有变革性特征的红外光电探测器[J]. 物理学报, 2019, 68(12): 120701. DOI: 10.7498/aps.68.20190281

    HU Weida, LI Qing, CHEN Xiaoshuang, et al. Recent progress on advanced infrared photodetectors[J]. Acta Phys. Sin. , 2019, 68(12): 120701. DOI: 10.7498/aps.68.20190281

    [4]

    Smith D L, Mailhiot C. Proposal for strained type II superlattice infrared detectors[J]. Journal of Applied Physics, 1987, 62(6): 2545. DOI: 10.1063/1.339468

    [5] 孙姚耀, 韩玺, 吕粤希, 等. 基于InAs/GaSb二类超晶格的中/长波双色红外探测器[J]. 航空兵器, 2018, 4(2): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ201802010.htm

    SUN Yaoyao, HAN Xi, LYU Yuexi et al. Performance of dual-color mid-/long-wavelength infrared detectors based on Type-II InAs/GaSb superlattice[J]. Aero Weaponry, 2018, 4(2): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ201802010.htm

    [6] 史衍丽. 锑基Ⅱ类超晶格红外探测器——第三代红外探测器的最佳选择[J]. 红外技术, 2011, 33(11): 621-624. DOI: 10.3969/j.issn.1001-8891.2011.11.001

    SHI Yanli. Type-II InAs/GaInSb superlattices infrared detectors-one of the best choices as the third generation infrared detectors[J]. Infrared Technology, 2011, 33(11): 621-624. DOI: 10.3969/j.issn.1001-8891.2011.11.001

    [7]

    Razeghi M, Haddadi A, Hoang A M, et al. Antimonide-based type II superlattices: a superior candidate for the third ceneration of infrared imaging systems[J]. Journal of Electronic Materials, 2014, 43(8): 2802-2807. DOI: 10.1007/s11664-014-3080-y

    [8]

    SUN Y, HAN X, HAO H, et al. 320×256 Short-/Mid-Wavelength dual-color infrared focal plane arrays based on Type-II InAs/GaSb superlattice[J]. Infrared Physics & Technology, 2017, 82: 140-143.

    [9]

    GUO C, JIANG Z, JIANG D, et al. Sulfide treatment passivation of mid-/long-wave dual-color infrared detectors based on type-II InAs/GaSb superlattices[J]. Optical and Quantum Electronics, 2019, 51(3): 73.

    [10]

    Haddadi A, Dehzangi A, Chevallier R, et al. Bias-selectable nBn dual-band long-/very long-wavelength infrared photodetectors based on InAs/InAs1−xSbx/AlAs1−xSbx type–II superlattices[J]. Scientific Reports, 2017, 7(1): 3379.

    [11] 刘武, 陈建新. InAs/GaSb II类超晶格红外探测技术研究进展[J]. 激光与红外, 2016, 46(6): 659-664. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201606003.htm

    LIU Wu, CHEN Jianxin. Research progress of InAs/GaSb type II superlattice infrared detection technique[J]. Laser & Infrared, 2016, 46(6): 659-664. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201606003.htm

    [12] 李俊斌, 李东升, 杨玉林, 等. 以色列SCD公司的III-V族红外探测器研究进展[J]. 红外技术, 2018, 40(10): 936-945. http://hwjs.nvir.cn/article/id/hwjs201810003

    LI Junbin, LI Dongsheng, YANG Yulin, et al. III-V semiconductor infrared detector research in SCD of Israel[J]. Infrared Technology, 2018, 40(10): 936-945. http://hwjs.nvir.cn/article/id/hwjs201810003

    [13] 黄建亮, 张艳华, 曹玉莲, 等. 锑化物二类超晶格红外探测器[J]. 航空兵器, 2019, 26(2): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ201902008.htm

    HUANG Jianliang, ZHANG Yanhua, CAO Yulian, et al. Antimonide type II superlattice infrared detectors[J]. Aero Weaponry, 2019, 26(2): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ201902008.htm

    [14]

    GUO C, JIANG Z, JIANG D, et al. Sulfide treatment passivation of mid-/long-wave dual-color infrared detectors based on type-II InAs/GaSb superlattices[J]. Optical and Quantum Electronics, 2019, 51(3): 73.

    [15]

    PENG R, JIAO S, JIANG D, et al. Dark current mechanisms and spectral response of SiO2-passivated photodiodes based on InAs/GaSb superlattice[J]. Thin Solid Films, 2017, 629: 55-59.

    [16]

    Tribolet P, Destefanis G, Ballet P, et al. Advanced HgCdTe technologies and dual-band developments[C]//Infrared Technology and Applications XXXIV. International Society for Optics and Photonics, 2008, 6940: 69402P.

    [17]

    Eich D, Ames C, Breiter R, et al. MCT-based high performance bispectral detectors by AIM[J]. Journal of Electronic Materials, 2019, 48(10): 1-10.

    [18]

    Rogalski A. InAs/GaSb type-II superlattices versus HgCdTe ternary alloys: future prospect[C]//Electro-Optical and Infrared Systems: Technology and Applications XIV. International Society for Optics and Photonics, 2017, 10433: 104330U.

    [19]

    Hirsh I, Shkedy L, CHEN N, et al. Hybrid dual-color MWIR detector for airborne missile warning systems[C]//Proc. of SPIE, 2012, 8353: 83530H.

    [20]

    Greiner M., Davis M. Devitt J. et al. State of the art in large format IR FPA development at CMC electronics Cincinnati[C]//Proc. of SPIE, 2012, 5074: 60-71.

    [21]

    Höglund L, von Würtemberg R M, Gatty H, et al. Type-II InAs/GaSb superlattices for dual color infrared detection[C]//Quantum Sensing and Nano Electronics and Photonics XIV. International Society for Optics and Photonics, 2017, 10111: 1011116.

    [22]

    Rehm R, Walther M, Schmitz J, et al. Dual-colour thermal imaging with InAs/GaSb superlattices in mid-wavelength infrared spectral range[J]. Electronics Letters, 2006, 42(10): 577-578.

    [23]

    Rehm R, Walther M, Rutz F, et al. Dual-color InAs/GaSb superlattice focal-plane array technology[J]. Journal of Electronic Materials, 2011, 40(8): 1738-1743.

    [24] 白治中, 徐志成, 周易, 等. 320×256元InAs/GaSb Ⅱ类超晶格中波红外双色焦平面探测器[J]. 红外与毫米波学报, 2015, 34(6): 716-720. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201506015.htm

    BAI Zhizhong, XU Zhicheng, ZHOU Yi, et al. 320×256 dual -color mid-wavelength infrared InAs/GaSb superlattice focal plane arrays[J]. J. Infrared Millim. Waves, 2015, 34(6): 716-720. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201506015.htm

    [25] 白治中, 徐志成, 周易, 等. InAs/GaSb Ⅱ类超晶格中波红外双色640×512规模焦平面探测器[C]//2015年红外, 遥感技术与应用研讨会暨交叉学科论坛, 2015: 1-7.

    BAI Zhizhong, XU Zhicheng, ZHOU Yi, et al. 640×512 dual -color mid-wavelength infrared InAs/GaSb superlattice focal plane arrays[C]//Infrared, Remote Sensing Technology and Application Seminar and Interdisciplinary Forum, 2015: 1-7.

    [26]

    HUANG J, MA W, ZHANG Y, et al. Two-colorni bin type II superlattice infrared photodetector with external quantum efficiency larger than 100%[J]. IEEE Electron Device Letters, 2017, 38(9): 1266-1269.

  • 期刊类型引用(4)

    1. 吕伽奇,丁帅,庞静珠,许小进. 基于改进LeNet-5网络的堆芯燃料组件编码识别. 东华大学学报(自然科学版). 2024(02): 121-128 . 百度学术
    2. 毛羽,郑怀华,李隆,张傲. 基于热红外图像的光伏板热斑检测方法研究. 自动化仪表. 2024(05): 25-29+34 . 百度学术
    3. 王晓君,孙梓林,王雁. 基于AMP架构的青霉素结晶与发酵检测系统设计. 仪表技术与传感器. 2024(05): 66-73 . 百度学术
    4. 赵兴文. 机器学习在信用贷款评分中的应用. 福建电脑. 2023(02): 31-34 . 百度学术

    其他类型引用(15)

图(8)  /  表(1)
计量
  • 文章访问数:  284
  • HTML全文浏览量:  69
  • PDF下载量:  122
  • 被引次数: 19
出版历程
  • 收稿日期:  2021-10-22
  • 修回日期:  2021-11-22
  • 刊出日期:  2022-09-19

目录

/

返回文章
返回
x 关闭 永久关闭

尊敬的专家、作者、读者:

端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

感谢您对本刊的支持!

《红外技术》编辑部

2024年6月6日