基于双注意力机制的红外与可见光图像融合方法

Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks

  • 摘要: 针对大多数基于GAN的红外与可见光图像融合方法仅在生成器使用注意力机制,而鉴别阶段缺乏注意力感知能力的问题,提出了一种基于双注意力机制生成对抗网络(double attention generative adversarial networks, DAGAN)的红外与可见光图像融合方法。DAGAN提出一种多尺度注意力模块,该模块在不同尺度空间中将空间注意力和通道注意力结合,并将其应用在图像生成阶段和鉴别阶段,使生成器和鉴别器均能感知图像中最具鉴别性的区域,同时提出了一种注意力损失函数,利用鉴别阶段的注意力图计算注意力损失,保存更多目标信息和背景信息。公开数据集TNO测试表明:与其他7种融合方法相比,DAGAN具有最好的视觉效果与最高的融合效率。

     

    Abstract: In this study, an infrared and visible image fusion using double attention generative adversarial networks(DAGAN) is proposed to address the issue of most infrared and visible light image fusion methods based on GaN using only the attention mechanism in the generator and lacking the attention perception ability in the identification stage. Using DAGAN, a multi-scale attention module that combines spatial and channel attentions in different scale spaces and applies it in the image generation and discrimination stages such that both the generator and discriminator can identify the most discriminative region in the image, was proposed. Simultaneously, an attention loss function that uses the attention map in the discrimination stage to calculate the attention loss and save more target and background information was proposed. The TNO test of a public dataset shows that, compared with the other seven fusion methods, DAGAN has the best visual effect and the highest fusion efficiency.

     

/

返回文章
返回