双重降维HOG结合SVM的快速手指静脉识别

褚洪佳, 陈光化, 汪凯旋

褚洪佳, 陈光化, 汪凯旋. 双重降维HOG结合SVM的快速手指静脉识别[J]. 红外技术, 2022, 44(3): 262-267.
引用本文: 褚洪佳, 陈光化, 汪凯旋. 双重降维HOG结合SVM的快速手指静脉识别[J]. 红外技术, 2022, 44(3): 262-267.
CHU Hongjia, CHEN Guanghua, WANG Kaixuan. Fast Finger Vein Recognition Based on a Dual Dimension Reduction Histogram of Oriented Gradient and Support Vector Machine[J]. Infrared Technology , 2022, 44(3): 262-267.
Citation: CHU Hongjia, CHEN Guanghua, WANG Kaixuan. Fast Finger Vein Recognition Based on a Dual Dimension Reduction Histogram of Oriented Gradient and Support Vector Machine[J]. Infrared Technology , 2022, 44(3): 262-267.

双重降维HOG结合SVM的快速手指静脉识别

基金项目: 

国家自然科学基金项目 61671285

详细信息
    作者简介:

    褚洪佳(1994-),男,山东省枣庄市人,硕士研究生,研究方向为图像处理、模式识别。E-mail: chu_hongjia@163.com

  • 中图分类号: TP391.4

Fast Finger Vein Recognition Based on a Dual Dimension Reduction Histogram of Oriented Gradient and Support Vector Machine

  • 摘要: 为减少手指静脉识别时间,提出一种双重降维方向梯度直方图特征(Histogram of Oriented Gradient,HOG)结合支持向量机(Support Vector Machine,SVM)分类的手指静脉识别方法。针对传统HOG算法特征维数高的问题,首先通过Fisher准则衡量梯度方向区间HOG特征的分类能力,然后使用序列前向选择法挑选出分类能力较优异的梯度方向区间构建部分方向区间HOG特征,最后使用主成分分析(Principal Component Analysis,PCA)降维。在公开的手指静脉数据库FV-USM和THU-FV上使用SVM多分类器进行分类识别,实验结果表明:双重降维HOG方法相较于HOG+PCA方法提取的特征维数降低了40%,识别时间减少了29.85%,识别准确率分别为99.17%和100%,等误率分别为1.07%和0.01%。
    Abstract: An identification model using a dual-dimension reduction histogram of oriented gradients (HOG) combined with a support vector machine (SVM) is proposed to reduce the time required for finger vein recognition. To solve the problem of high feature dimensionality in the traditional HOG algorithm, the classification ability of the gradient direction interval is first measured using the Fisher criterion. Next, the sequence forward selection method is used to select the gradient direction interval with optimal classification ability to construct a partial direction interval HOG feature. Finally, principal component analysis (PCA) is used to reduce the number of dimensions. An SVM multi-classifier was used for the classification of the FV-USM and THU-FV datasets. The experimental results demonstrate that compared to the HOG+PCA method, the feature dimensions extracted by the dual-dimensional reduction HOG method are reduced by 40%, the recognition time is reduced by 29.85%, the recognition accuracy is 99.17% and 100%, respectively, and the equal error rate is 1.07% and 0.01%, respectively.
  • 图  1   手指静脉识别总体结构图

    Figure  1.   Finger vein recognition structure

    图  2   手指静脉图像预处理过程

    Figure  2.   Preprocessing of finger vein image

    图  3   边缘检测Sobel模板

    Figure  3.   Sobel template for edge detection

    图  4   HOG算法中的sobel模板

    Figure  4.   Sobel template in HOG algorithm

    图  5   序列前向选择法流程图

    Figure  5.   Flow chart of sequential forward selection method

    图  6   惩罚因子与准确率关系图

    Figure  6.   Relationship between C and accuracy

    图  7   基于SVM的四分类器

    Figure  7.   Four classifiers based on SVM

    图  8   方向区间数目与识别准确率关系图

    Figure  8.   Relationship between the number of direction intervals and the recognition accuracy

    图  9   ROC曲线图(FV-USM数据库)

    Figure  9.   ROC Curves (FV-USM Database)

    图  10   不同数据库手指静脉图像

    Figure  10.   Finger vein images from different databases

    表  1   核函数分类训练数据

    Table  1   Training data of kernel function

    Kernel Number of support vectors Accuracy
    MIN MAX
    Linear 5 8 98.67%
    Polynomial 8 8 75.17%
    RBF 8 8 97.83%
    Sigmoid 8 8 97.83%
    下载: 导出CSV

    表  2   时间开销比较

    Table  2   Comparison of time cost

    Methods Dimension of feature Extraction time/ms Recognition time/ms
    LBP+SVM 1152 798.64 98.32
    HOG+SVM 672 25.73 35.73
    HOG+PCA+SVM 145 26.76 19.10
    Proposed method 87 26.97 13.59
    下载: 导出CSV

    表  3   不同方法实验数据比较

    Table  3   Comparison of experimental data of different methods

    Methods FV-USM THU-FV
    Accuracy/% EER/% Accuracy/% EER/%
    Maximum curvature point+MHD 87.64 10.46 98.38 2.12
    Wide line detector+LTS-HD 92.38 5.35 99.26 0.34
    LBP+ Euclidean distance 96.13 3.66 100 0.32
    Dual dimension reduction HOG+ Euclidean distance 97.26 4.12 100 0.28
    LBP+SVM 97.86 2.16 100 0.04
    Proposed method 99.17 1.07 100 0.01
    下载: 导出CSV
  • [1]

    YANG L, YANG G P, YIN Y L, et al. Finger vein recognition with anatomy structure analysis[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2018, 28(8): 1892-1905. https://ieeexplore.ieee.org/document/7882665

    [2]

    CHEN G H, DAI QH, TANG X, et al. An improved least trimmed square hausdorff distance finger vein recognition[C]//International Conference on Systems and Informatics (ICSAI), 2018: 939-943.

    [3]

    LI S Y, ZHANG H G, YANG JF. Finger vein recognition based on local graph structural coding and CNN[C]//Proc of SPIE, 2019, 11069: 110693I-110693I-8.

    [4]

    ZHANG Y K, LI W J, ZHANG L P, et al. Adaptive Gabor convolutional neural networks for finger-vein recognition[C]//International Conference on High Performance Big Data and Intelligent Systems (Hpbd & Is), 2019: 219-222.

    [5]

    LIU H Y, YANG L, YANG G P, et al. Discriminative binary descriptor for finger vein recognition[J]. IEEE Access, 2018, 6: 5795-5804. DOI: 10.1109/ACCESS.2017.2787543

    [6]

    WANG X, WANG H B, HE Y, et al. Novel Algorithm for finger vein recognition based on inception-Resnet module[J]. Proc of SPIE, 2019, 11179: 111791D-111791D-9.

    [7] 陶志勇, 胡亚磊, 林森. 基于改进AlexNet的手指静脉识别[J]. 激光与光电子学进展, 2020, 57(8): 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202008007.htm

    TAO Zhiyong, HU Yalei, LIN Sen. Finger vein recognition based on improved AlexNet[J]. Laser & Optoelectronics Progress, 2020, 57(8): 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202008007.htm

    [8] 刘超, 王容川, 许晓伟, 等. 基于改进LBP的手指静脉识别算法[J]. 计算机仿真, 2019, 36(1): 381-386. DOI: 10.3969/j.issn.1006-9348.2019.01.079

    LIU Chao, WANG Rongchuan, XU Xiaowei, et al. Finger vein recognition algorithm based on improved LBP[J]. Computer Simulation, 2019, 36(1): 381-386. DOI: 10.3969/j.issn.1006-9348.2019.01.079

    [9] 李菲, 李小霞, 周颖玥. 基于改进HOG特征和稀疏表示的手指静脉识别[J]. 传感器与微系统, 2018, 37(11): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201811011.htm

    LI Fei, LI Xiaoxia, ZHOU Yingyue. Finger vein recognition based on improved HOG features and sparse representation[J]. Transducer and Microsystem Technologies, 2018, 37(11): 38-41, 44. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201811011.htm

    [10]

    Veluchamy S, Karlmarx L R. System for multimodal biometric recognition based on finger knuckle and finger vein using feature-level fusion and k-support vector machine classifier[J]. IET Biometrics, 2017, 6(3): 232-242. DOI: 10.1049/iet-bmt.2016.0112

    [11] 徐子豪, 陈光化, 傅志威. 改进型LDA结合LBP的手指静脉识别[J]. 现代电子技术, 2020, 43(12): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ202012002.htm

    XU Zihao, CHEN Guanghua, FU Zhiwei. Finger vein recognition of improved LDA combined with LBP[J]. Modern Electronics Technique, 2020, 43(12): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ202012002.htm

    [12] 徐铸业, 赵小强. 基于Agast-Adaboost的图像匹配算法[J]. 兰州理工大学学报, 2020, 46(4): 110-115. DOI: 10.3969/j.issn.1673-5196.2020.06.001

    XU Zhuye, ZHAO Xiaoqiang. Image matching algorithm based on Agast-Adaboost[J]. Journal of Lanzhou University of Technology, 2020, 46(6): 1-4. DOI: 10.3969/j.issn.1673-5196.2020.06.001

    [13] 贾楚. 基于改进HOG特征的行人检测算法研究[D]. 秦皇岛: 燕山大学, 2016.

    JIA Chu. Research of Pedestrian Detection Based on Improved HOG Features[D]. Qinhuangdao: Yanshan University, 2016.

    [14] 蒋政, 程春玲. 基于Haar特性的改进HOG的人脸特征提取算法[J]. 计算机科学, 2017, 44(1): 303-307. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201701057.htm

    JIANG Zheng, CHENG Chunling. Improved HOG face feature extraction algorithm based on Haar characteristics[J]. Computer Science, 2017, 44(1): 303-307. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201701057.htm

  • 期刊类型引用(1)

    1. 韩冰. 基于改进卷积神经网络的3D打印机激光点温度检测方法. 工业计量. 2023(02): 96-99+112 . 百度学术

    其他类型引用(5)

图(10)  /  表(3)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  38
  • PDF下载量:  22
  • 被引次数: 6
出版历程
  • 收稿日期:  2021-01-22
  • 修回日期:  2021-04-07
  • 刊出日期:  2022-03-19

目录

    /

    返回文章
    返回
    x 关闭 永久关闭

    尊敬的专家、作者、读者:

    端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

    感谢您对本刊的支持!

    《红外技术》编辑部

    2024年6月6日