Optical System Design of Suspended Infrared Night Vision Based on Low Light Level Helmet Observation
-
摘要: 头盔夜视仪由单波段向多波段图像融合的方向发展。本文对基于微光头盔观察、悬挂式红外夜视仪的技术方案、图像配准精度进行分析并进行光学仿真。首先分析悬挂式红外夜视仪与微光头盔组合使用的工作模式以及图像旋转、圆形视场的设计方案;其次根据悬挂式红外夜视仪的设计指标,对其红外物镜及投影物镜进行光学仿真;第三从悬挂精度、光轴一致性及畸变等三方面分析图像配准精度;最后根据仿真结果及图像配准精度分析说明基于微光头盔观察、悬挂式红外夜视仪的技术方案可行,能达到预期的效果。Abstract: Helmet night vision systems are developed from single-band to multi-band image fusion. In this study, we analyzed the technical program and image registration accuracy based on low-light-level helmet observation and a hanging infrared night vision device. Optical simulation analysis was also conducted. First, we analyzed the working mode of the combination of hanging infrared night vision and low-light-level helmet, as well as the design scheme of image rotation and circular field of view. Second, according to the design index of hanging infrared night vision, optical simulation of an infrared lens and projection lens was carried out. Third, the image registration accuracy was analyzed from three viewpoints: suspension accuracy, optical axis consistency, and distortion. Finally, according to the simulation results and image registration accuracy analysis, a technical scheme based on low-light-level helmet observation and suspended infrared night vision is feasible and can achieve the targeted effect.
-
Keywords:
- projection lens /
- infrared lens /
- image fusion /
- image registration /
- suspended /
- infrared night vision
-
-
表 1 悬挂式红外夜视仪光学参数
Table 1 Optical parameters of suspended infrared night vision
Infrared lens Focal length
Field
F/#
Band
Detector type13.88 mm
20°(circular)
1
8~12 μm
UFPA 384×288, 17 μmProjection lens Focal length
Field
F/#
Band20.58 mm
20°(circular)
4
0.486~0.656 μmDetector type OLED 800×600, 12.6 μm Exit pupil distance 3.7 mm Suspended infrared night vision Field
Magnification
Temperature20°(circular)
1×
−40℃~60℃表 2 红外物镜、投影物镜在相同视场点处的畸变
Table 2 Distortion of infrared lens and projection lens at the same field of view
Field of view Infrared lens Projection lens 0.1ω −0.01999022% 0.02068782% 0.2ω −0.07997603% 0.08263791% 0.3ω −0.18000125% 0.18550392% 0.4ω −0.32013343% 0.32868725% 0.5ω −0.50045517% 0.51130229% 0.6ω −0.72105160% 0.73212184% 0.7ω −0.98199306% 0.98949535% 0.8ω −1.28331225% 1.28122817% 0.9ω −1.62497467% 1.60440259% 1ω −2.00684062% 1.95510906% 表 3 红外物镜公差
Table 3 Tolerance of infrared objective lens parts
Parameter Tolerance N ±3 aperture ΔN ±0.8 aperture Aspheric error ±0.00006 mm Thickness of optical parts ±0.02 mm Surface tilt ±0.006 mm Air distance ±0.02 mm Element tilt ±0.02 mm Element eccentricity 0.025 mm 表 4 红外物镜公差分析结果
Table 4 Tolerance analysis results of infrared objective lens
Lens percentage/% MTF minimum
(Nyquist frequency)90 0.219 80 0.246 50 0.291 20 0.348 10 0.365 表 5 投影物镜零件公差
Table 5 Tolerance of projection lens parts
Parameter Tolerance N ±4 aperture ΔN ±0.5 aperture Thickness of optical part ±0.02 mm Air distance ±0.04 mm Surface tilt ±6′ Element tilt ±6′ Element eccentricity ±0.052 mm nd ±0.0009 vd ±0.95% 表 6 投影物镜公差分析结果
Table 6 Tolerance analysis results of projection lens
Lens percentage/% MTF minimum(40 lp/mm) 90 0.603 80 0.626 50 0.669 20 0.687 10 0.697 -
[1] 任桃桃, 邱亚峰. 头盔式单目低照度CMOS夜视仪结构设计与分析[J]. 红外技术, 2016, 38(8): 653-658. http://hwjs.nvir.cn/article/id/hwjs201608005 REN Taotao, QIU Yafeng. Structure design and analysis of monocular low illumination CMOS night vision device for helmet[J]. Infrared Technology, 2016, 38(8): 653-658. http://hwjs.nvir.cn/article/id/hwjs201608005
[2] 白瑜, 程习敏, 冯成, 等. 拼接式全景头盔红外夜视仪系统设计[J]. 光电技术应用, 2014, 29(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYG201401008.htm BAI Yu, CHENG Ximin, FENG Cheng, et al. Design of segmented panoramic helmet-mounted infrared night vision[J]. Electro-Optic Technology Application, 2014, 29(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYG201401008.htm
[3] 王思博. 三通道微光夜视仪光学系统设计[D]. 长春: 长春理工大学, 2014. WANG Sib. Optical of Three Channels of Night Vision Instrument[D]. Changchun: Changchun University of Science Technology, 2014.
[4] 史训豪. 夜视仪在单兵观瞄系统中的应用[J]. 科技风, 2019(10): 18-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KJFT201928018.htm SHI Xunhao. Application of night vision device in single soldier observation and aiming system[J]. Technology Wind, 2019(10): 18-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KJFT201928018.htm
[5] 李力, 李训牛. 直升机飞行员头盔夜视系统视觉及舒适性优化技术分析[J]. 红外技术, 2017, 39(10): 890-896. http://hwjs.nvir.cn/article/id/hwjs201710004 LI Li, LI Xunniu. Analysis of optimization technology for a night vision system for helicopter pilots with special focus on the visual characteristics and comfort[J]. Infrared Technology, 2017, 39(10): 890-896. http://hwjs.nvir.cn/article/id/hwjs201710004
[6] 许为. 航空夜视镜的人机工效学问题[J]. 国际航空, 1991(12): 52-53. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHHK200504027.htm XU Wei. Ergonomic problems of aerial night vision goggles[J]. International Aviation, 1991(12): 52-53. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHHK200504027.htm
-
期刊类型引用(3)
1. 郑卓锐,钟慧,聂勇潇,林婷,方依霏,宋立伟,田野. 基于太赫兹超材料的牛血清白蛋白传感器研究. 中国激光. 2023(17): 208-215 . 百度学术
2. 施卫,王海青,侯磊,董陈岗,杨磊,赵红卫,王志全,王悦政,李超凡. 氨基酸分子水溶液的太赫兹无损检测. 中国科学:物理学 力学 天文学. 2021(05): 90-95 . 百度学术
3. 燕芳,刘成毫,王志春,李伟. 甘草酸太赫兹振动模式的量子化学计算. 光谱学与光谱分析. 2020(06): 1780-1784 . 百度学术
其他类型引用(12)