基于微光头盔观察、悬挂式红外夜视仪光学系统设计

Optical System Design of Suspended Infrared Night Vision Based on Low Light Level Helmet Observation

  • 摘要: 头盔夜视仪由单波段向多波段图像融合的方向发展。本文对基于微光头盔观察、悬挂式红外夜视仪的技术方案、图像配准精度进行分析并进行光学仿真。首先分析悬挂式红外夜视仪与微光头盔组合使用的工作模式以及图像旋转、圆形视场的设计方案;其次根据悬挂式红外夜视仪的设计指标,对其红外物镜及投影物镜进行光学仿真;第三从悬挂精度、光轴一致性及畸变等三方面分析图像配准精度;最后根据仿真结果及图像配准精度分析说明基于微光头盔观察、悬挂式红外夜视仪的技术方案可行,能达到预期的效果。

     

    Abstract: Helmet night vision systems are developed from single-band to multi-band image fusion. In this study, we analyzed the technical program and image registration accuracy based on low-light-level helmet observation and a hanging infrared night vision device. Optical simulation analysis was also conducted. First, we analyzed the working mode of the combination of hanging infrared night vision and low-light-level helmet, as well as the design scheme of image rotation and circular field of view. Second, according to the design index of hanging infrared night vision, optical simulation of an infrared lens and projection lens was carried out. Third, the image registration accuracy was analyzed from three viewpoints: suspension accuracy, optical axis consistency, and distortion. Finally, according to the simulation results and image registration accuracy analysis, a technical scheme based on low-light-level helmet observation and suspended infrared night vision is feasible and can achieve the targeted effect.

     

/

返回文章
返回