卫星用高光谱红外焦平面读出电路设计

吴圣娟, 胡彦博, 胡旭, 洪建堂, 李红福, 马伊娜, 邓蔚

吴圣娟, 胡彦博, 胡旭, 洪建堂, 李红福, 马伊娜, 邓蔚. 卫星用高光谱红外焦平面读出电路设计[J]. 红外技术, 2020, 42(11): 1081-1088.
引用本文: 吴圣娟, 胡彦博, 胡旭, 洪建堂, 李红福, 马伊娜, 邓蔚. 卫星用高光谱红外焦平面读出电路设计[J]. 红外技术, 2020, 42(11): 1081-1088.
WU Shengjuan, HU Yanbo, HU Xu, HONG Jiantang, LI Hongfu, MA Yina, DENG Wei. Hyperspectral Infrared Focal Plane Array ROIC Design for Satellite Applications[J]. Infrared Technology , 2020, 42(11): 1081-1088.
Citation: WU Shengjuan, HU Yanbo, HU Xu, HONG Jiantang, LI Hongfu, MA Yina, DENG Wei. Hyperspectral Infrared Focal Plane Array ROIC Design for Satellite Applications[J]. Infrared Technology , 2020, 42(11): 1081-1088.

卫星用高光谱红外焦平面读出电路设计

详细信息
    作者简介:

    吴圣娟(1984-),女,硕士,研究方向为读出电路设计。E-mail:275099355@qq.com

  • 中图分类号: TN216

Hyperspectral Infrared Focal Plane Array ROIC Design for Satellite Applications

  • 摘要: 研制出一款高性能卫星用高光谱红外焦平面CMOS(complementary metal oxide semiconductor)读出电路ROIC(readout integrated circuit)芯片。读出电路设计包括任意行选择功能以及行增益单独调制功能,满足高光谱应用对读出电路提出的新要求。读出电路7档增益可选,适用于中波与短波碲镉汞HgCdTe(MCT)芯片;其他功能包括边积分边读出IWR(integration while reading),抗晕,串口功能控制以及全芯片电注入测试功能。读出电路采用0.35 m曝光缝合工艺,电源电压5 V,测试结果表现出良好的性能:在77 K条件下,全帧频可达450 Hz,功耗可调且典型值为300 mW。本文介绍了在读出电路设计的基本架构,提出设计中遇到的问题以及相应的解决方法,在文末给出了电路的测试结果。
    Abstract: A hyperspectral infrared focal plane complementary metal–oxide semiconductor (CMOS) readout integrated circuit (ROIC) was developed for satellite applications. The ROIC design includes row and gain selection functions for each line to meet the new requirements of hyperspectral applications in ROICs. Further, the ROIC optionally supports 7-gain features and is suited for medium and shortwave MCT chips; other features of the proposed design include integration while reading, anti-blooming, series port control, and full-chip current injection test functions. The proposed ROIC was fabricated in a 0.35 μm stitching process with a 5 V power supply; the test results show good performance of the ROIC, with a full-frame rate of 450 Hz and adjustable power dissipation having a typical value of 300 mW. This paper introduces the basic structure of the readout circuit design, shows the problems in the design and the corresponding solutions, and gives the test results of the circuit at the end of the paper.
  • 图  1   高光谱成像示意图

    Figure  1.   Hyperspectral imaging general view

    图  2   读出电路结构示意图

    Figure  2.   Readout circuit structure general view

    图  3   像元电路示意图

    Figure  3.   Pixel circuit general view

    图  4   CTIA电路控制信号波形图

    Figure  4.   Circuit control signal waveform

    图  5   复位开关波形图

    Figure  5.   Reset switch waveform

    图  6   频谱分析图

    Figure  6.   Spectrum analysis chart

    图  7   像元开关负载

    Figure  7.   Pixel switch load

    图  8   全阵列金属线仿真模型

    Figure  8.   Simulation model for full array metal wire

    图  9   直流信号仿真结果

    Figure  9.   Simulation result of DC signals

    图  10   不均匀性仿真对照

    Figure  10.   Non-uniformity simulation and comparison

    图  11   行选电路逻辑图

    Figure  11.   Line selection circuit schematic

    图  12   带曝光缝合的版图设计

    Figure  12.   Layout design based on exposure stitching

    图  13   理想放大器噪声分析

    Figure  13.   Ideal amplifier noise analysis

    表  1   读出电路主要性能参数

    Table  1   Main performance parameters of readout circuit

    Performance Typical value
    Main clock 16MHz
    Serial interface clock 8MHz
    Charge capacity Min:0.53 Me-
    Max:2.40Me-
    Output channel 8
    Output voltage swing 3V(1.6-4.6V)
    Frame rate 450Hz(Max)
    Readout mode IWR
    Function Anti-blooming
    Row selection function
    Gain selection function
    下载: 导出CSV

    表  2   读出电路7档增益

    Table  2   Seven gain of readout circuit

    Gain Cint/fF Capacity
    1 4.5 28 0.53Me-
    2 3.2 40 0.75Me-
    3 2.13 60 1.13Me-
    4 1.88 68 1.28Me-
    5 1.45 88 1.65Me-
    6 1.28 100 1.88Me-
    7 1 128 2.40Me-
    下载: 导出CSV

    表  3   三种输入级结构比较

    Table  3   Comparison of three input level structures

    DI CTIA SFD
    下载: 导出CSV

    表  4   读出电路测试结果

    Table  4   Readout circuit test result

    IWR Meet
    expectations
    Row selection function
    Gain selection function
    Output voltage swing 3V
    Power dissipation 300mW
    (adjustable)
    Nonlinearity ≤1%
    下载: 导出CSV

    表  5   噪声测试结果

    Table  5   Noise test results

    Cint/fF Tint/ms DC voltage/V Response voltage/mV Noise voltage/mV Dynamic range/dB Signal to noise ratio
    28 0.6 2.729 692 2.634 61.1 263
    40 1.0 2.835 787 2.349 62.1 335
    60 1.5 2.855 815 2.025 63.4 402
    68 1.6 2.835 804 1.944 63.8 414
    88 2.1 2.820 803 1.739 64.7 462
    100 2.5 2.870 837 1.714 64.9 488
    128 3.0 2.822 811 1.509 66.0 537
    下载: 导出CSV
  • [1]

    ZHANG C, MU T, REN W, et al. Design and Analysis of Wide-field-of-view Polarization Imaging Spectrometer[J]. Optical Engineering, 2010, 49(4): 043002-1-043002-7. DOI: 10.1117/1.3386079.full

    [2]

    ZHANG C, MU T. Respond to The Comment on Design and Analysis of Wide Field of View Polarization Imaging Spectrometer[J]. Optical Engineering, 2011, 50(4): 049701. DOI: 10.1117/1.3562982

    [3]

    ZHANG C, XIANG LIB, ZHAO B, et al. A Static Polarization Imaging Spectrometer Based on a Savart Polariscope[J]. Optics Communications, 2002, 203(1): 21-26. http://www.sciencedirect.com/science/article/pii/S0030401801017266

    [4]

    ZHANG C, WU Q, MU T. Influences of Pyramid Prism Deflection on Inversion of Wind Velocity and Temperature in a Novel Static Polarization Wind Imaging Interferometer[J]. Applied Optics, 2011, 50(32): 6134-6139. DOI: 10.1364/AO.50.006134

    [5] 孙允珠, 蒋光伟, 李云端, 等.高光谱观测卫星及应用前景[J].上海航天, 2017, 34(3): 1-13. http://www.cnki.com.cn/Article/CJFDTotal-SHHT201703001.htm

    SUN Yunzhu, JIANG Guangwei, LI Yunduan, et al. Hyper-spectral Observation Satellite and Its Application Prospects[J]. Aerospace Shanghai, 2017, 34(3): 1-13. http://www.cnki.com.cn/Article/CJFDTotal-SHHT201703001.htm

    [6] 王跃明, 贾建鑫, 何志平, 等.若干高光谱成像新技术及其应用研究[J].遥感学报, 2016, 20(5): 850-857. http://www.cnki.com.cn/Article/CJFDTotal-YGXB201605017.htm

    WANG Yueming, JIA Jianxin, HE Zhiping, et al. Key technologies of advanced hyperspectral imaging system[J]. Journal of Remote Sensing, 2016, 20(5): 850–857. http://www.cnki.com.cn/Article/CJFDTotal-YGXB201605017.htm

    [7] 张淳民, 穆廷魁, 颜廷昱, 等.高光谱遥感技术发展与展望[J].航天返回与遥感, 2018, 39(3): 104-114. http://www.cqvip.com/QK/91734A/201803/675608007.html

    ZHANG Chunmin, MU Tingkui, YAN Tingyu, et al. Overview of Hyperspectral Remote Sensing Technology[J]. Space Craftre Covery & Remote Sensing, 2018, 39(3): 104-114. http://www.cqvip.com/QK/91734A/201803/675608007.html

    [8] 戴立群, 唐绍凡, 徐丽娜, 等.从可见光到热红外全谱段探测的星载多光谱成像仪器技术发展概述[J].红外技术, 2019, 41(2): 107-117. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=HWJS201902002

    DAI Liqun, TANG Shaofan, XU lina, et al. Development Overview of Space-borne Multi-spectral Imager with Band Range from Visible to Thermal Infrared[J]. Infrared Technology, 2019, 41(2): 107-117. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=HWJS201902002

    [9] 范斌, 陈旭, 李碧岑, 等. "高分五号"卫星光学遥感载荷的技术创新[J].红外与激光工程, 2017, 46(1): 8-14. http://www.cqvip.com/QK/91846A/20171/671298562.html

    FAN Bin, CHEN Xu, LI Bicen, et al. Technical Innovation of Optical Remote Sensing Payloads On-board GF-5 Satellite[J]. Infrared and Laser Engineering, 2017, 46(1): 8-14. http://www.cqvip.com/QK/91846A/20171/671298562.html

    [10]

    Bruno FIEQUE, Philippe CHORIER, Bertr TERRIER. Sofradir detectors for hyperspectral applications from visible upto VLWIR[C]//Proc. Of SPIE, 2012, 8533: 853313-12.

    [11]

    Urbain VanBogget, Vincent Vervenne, Rosa Maria Vinella, et al. COUGAR: A Liquid Nitrogen Cooled InGaAs Camera for Astronomy and Electro-Luminescence[C]//Proc. Of SPIE, 2014, 9070: 90700B-1.

  • 期刊类型引用(1)

    1. 朱强,周维虎,陈晓梅,石俊凯,李冠楠. 高速实时近红外弱信号检测系统. 光学精密工程. 2022(24): 3116-3127 . 百度学术

    其他类型引用(2)

图(13)  /  表(5)
计量
  • 文章访问数:  638
  • HTML全文浏览量:  431
  • PDF下载量:  81
  • 被引次数: 3
出版历程
  • 收稿日期:  2019-09-24
  • 修回日期:  2020-10-09
  • 刊出日期:  2020-11-19

目录

    /

    返回文章
    返回
    x 关闭 永久关闭

    尊敬的专家、作者、读者:

    端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

    感谢您对本刊的支持!

    《红外技术》编辑部

    2024年6月6日