Hyperspectral Infrared Focal Plane Array ROIC Design for Satellite Applications
-
摘要: 研制出一款高性能卫星用高光谱红外焦平面CMOS(complementary metal oxide semiconductor)读出电路ROIC(readout integrated circuit)芯片。读出电路设计包括任意行选择功能以及行增益单独调制功能,满足高光谱应用对读出电路提出的新要求。读出电路7档增益可选,适用于中波与短波碲镉汞HgCdTe(MCT)芯片;其他功能包括边积分边读出IWR(integration while reading),抗晕,串口功能控制以及全芯片电注入测试功能。读出电路采用0.35 m曝光缝合工艺,电源电压5 V,测试结果表现出良好的性能:在77 K条件下,全帧频可达450 Hz,功耗可调且典型值为300 mW。本文介绍了在读出电路设计的基本架构,提出设计中遇到的问题以及相应的解决方法,在文末给出了电路的测试结果。Abstract: A hyperspectral infrared focal plane complementary metal–oxide semiconductor (CMOS) readout integrated circuit (ROIC) was developed for satellite applications. The ROIC design includes row and gain selection functions for each line to meet the new requirements of hyperspectral applications in ROICs. Further, the ROIC optionally supports 7-gain features and is suited for medium and shortwave MCT chips; other features of the proposed design include integration while reading, anti-blooming, series port control, and full-chip current injection test functions. The proposed ROIC was fabricated in a 0.35 μm stitching process with a 5 V power supply; the test results show good performance of the ROIC, with a full-frame rate of 450 Hz and adjustable power dissipation having a typical value of 300 mW. This paper introduces the basic structure of the readout circuit design, shows the problems in the design and the corresponding solutions, and gives the test results of the circuit at the end of the paper.
-
-
表 1 读出电路主要性能参数
Table 1 Main performance parameters of readout circuit
Performance Typical value Main clock 16MHz Serial interface clock 8MHz Charge capacity Min:0.53 Me- Max:2.40Me- Output channel 8 Output voltage swing 3V(1.6-4.6V) Frame rate 450Hz(Max) Readout mode IWR Function Anti-blooming Row selection function Gain selection function 表 2 读出电路7档增益
Table 2 Seven gain of readout circuit
Gain Cint/fF Capacity 1 4.5 28 0.53Me- 2 3.2 40 0.75Me- 3 2.13 60 1.13Me- 4 1.88 68 1.28Me- 5 1.45 88 1.65Me- 6 1.28 100 1.88Me- 7 1 128 2.40Me- 表 3 三种输入级结构比较
Table 3 Comparison of three input level structures
DI CTIA SFD 表 4 读出电路测试结果
Table 4 Readout circuit test result
IWR Meet
expectationsRow selection function Gain selection function Output voltage swing 3V Power dissipation 300mW
(adjustable)Nonlinearity ≤1% 表 5 噪声测试结果
Table 5 Noise test results
Cint/fF Tint/ms DC voltage/V Response voltage/mV Noise voltage/mV Dynamic range/dB Signal to noise ratio 28 0.6 2.729 692 2.634 61.1 263 40 1.0 2.835 787 2.349 62.1 335 60 1.5 2.855 815 2.025 63.4 402 68 1.6 2.835 804 1.944 63.8 414 88 2.1 2.820 803 1.739 64.7 462 100 2.5 2.870 837 1.714 64.9 488 128 3.0 2.822 811 1.509 66.0 537 -
[1] ZHANG C, MU T, REN W, et al. Design and Analysis of Wide-field-of-view Polarization Imaging Spectrometer[J]. Optical Engineering, 2010, 49(4): 043002-1-043002-7. DOI: 10.1117/1.3386079.full
[2] ZHANG C, MU T. Respond to The Comment on Design and Analysis of Wide Field of View Polarization Imaging Spectrometer[J]. Optical Engineering, 2011, 50(4): 049701. DOI: 10.1117/1.3562982
[3] ZHANG C, XIANG LIB, ZHAO B, et al. A Static Polarization Imaging Spectrometer Based on a Savart Polariscope[J]. Optics Communications, 2002, 203(1): 21-26. http://www.sciencedirect.com/science/article/pii/S0030401801017266
[4] ZHANG C, WU Q, MU T. Influences of Pyramid Prism Deflection on Inversion of Wind Velocity and Temperature in a Novel Static Polarization Wind Imaging Interferometer[J]. Applied Optics, 2011, 50(32): 6134-6139. DOI: 10.1364/AO.50.006134
[5] 孙允珠, 蒋光伟, 李云端, 等.高光谱观测卫星及应用前景[J].上海航天, 2017, 34(3): 1-13. http://www.cnki.com.cn/Article/CJFDTotal-SHHT201703001.htm SUN Yunzhu, JIANG Guangwei, LI Yunduan, et al. Hyper-spectral Observation Satellite and Its Application Prospects[J]. Aerospace Shanghai, 2017, 34(3): 1-13. http://www.cnki.com.cn/Article/CJFDTotal-SHHT201703001.htm
[6] 王跃明, 贾建鑫, 何志平, 等.若干高光谱成像新技术及其应用研究[J].遥感学报, 2016, 20(5): 850-857. http://www.cnki.com.cn/Article/CJFDTotal-YGXB201605017.htm WANG Yueming, JIA Jianxin, HE Zhiping, et al. Key technologies of advanced hyperspectral imaging system[J]. Journal of Remote Sensing, 2016, 20(5): 850–857. http://www.cnki.com.cn/Article/CJFDTotal-YGXB201605017.htm
[7] 张淳民, 穆廷魁, 颜廷昱, 等.高光谱遥感技术发展与展望[J].航天返回与遥感, 2018, 39(3): 104-114. http://www.cqvip.com/QK/91734A/201803/675608007.html ZHANG Chunmin, MU Tingkui, YAN Tingyu, et al. Overview of Hyperspectral Remote Sensing Technology[J]. Space Craftre Covery & Remote Sensing, 2018, 39(3): 104-114. http://www.cqvip.com/QK/91734A/201803/675608007.html
[8] 戴立群, 唐绍凡, 徐丽娜, 等.从可见光到热红外全谱段探测的星载多光谱成像仪器技术发展概述[J].红外技术, 2019, 41(2): 107-117. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=HWJS201902002 DAI Liqun, TANG Shaofan, XU lina, et al. Development Overview of Space-borne Multi-spectral Imager with Band Range from Visible to Thermal Infrared[J]. Infrared Technology, 2019, 41(2): 107-117. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=HWJS201902002
[9] 范斌, 陈旭, 李碧岑, 等. "高分五号"卫星光学遥感载荷的技术创新[J].红外与激光工程, 2017, 46(1): 8-14. http://www.cqvip.com/QK/91846A/20171/671298562.html FAN Bin, CHEN Xu, LI Bicen, et al. Technical Innovation of Optical Remote Sensing Payloads On-board GF-5 Satellite[J]. Infrared and Laser Engineering, 2017, 46(1): 8-14. http://www.cqvip.com/QK/91846A/20171/671298562.html
[10] Bruno FIEQUE, Philippe CHORIER, Bertr TERRIER. Sofradir detectors for hyperspectral applications from visible upto VLWIR[C]//Proc. Of SPIE, 2012, 8533: 853313-12.
[11] Urbain VanBogget, Vincent Vervenne, Rosa Maria Vinella, et al. COUGAR: A Liquid Nitrogen Cooled InGaAs Camera for Astronomy and Electro-Luminescence[C]//Proc. Of SPIE, 2014, 9070: 90700B-1.
-
期刊类型引用(1)
1. 朱强,周维虎,陈晓梅,石俊凯,李冠楠. 高速实时近红外弱信号检测系统. 光学精密工程. 2022(24): 3116-3127 . 百度学术
其他类型引用(2)